e₂v

e2v technologies

FEATURES

- 1024 by 256 Pixel Format
- 26 μm Square Pixels
- Image Area 26.6 x 6.7 mm
- Deep Depletion for Enhanced Infrared Sensitivity
- Symmetrical Anti-static Gate Protection
- Anti-blooming Readout Register
- Zero Light Emitting Output Amplifier

APPLICATIONS

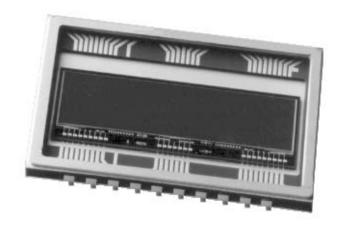
- Spectroscopy
- Scientific Imaging
- TDI Operation

INTRODUCTION

The CCD30-11 deep depletion sensor is a high performance CCD sensor designed as an alternative to the standard CCD30-11, for use in the scientific spectroscopy instrument market, where enhanced infrared spectral response is a critical performance parameter. With an array of 1024 x 256 26 μm square pixels it has an imaging area to suit most spectrometer outputs of 26.6 x 6.7 mm (1.05 x 0.26 inch).

The readout register is organised along the long (1024 pixel) edge of the sensor and contains an anti-blooming drain to allow high speed binning operations of low level signals which may be adjacent to much stronger signals. The novel output amplifier design has no light emission.

The sensor is manufactured on thick epitaxial silicon, which gives much improved infrared responsivity. It is designed as a standard mode CCD, rather than inverted mode, as it is necessary to deplete fully into the epitaxial silicon to avoid loss of resolution.


Standard three phase clocking and isolated buried channel charge transfer are employed.

In common with all other e2v technologies CCD sensors, the CCD30-11 is available with either a quartz or fibre-optic window. In addition a high performance electronics drive unit is available to enable the CCD30-11 to be evaluated easily.

Designers are advised to contact e2v technologies should they be considering using CCD sensors in abnormal environments or if they require customised packaging or performance features.

Further information on deep depletion CCDs can be found in e2v technologies CCD Technical Note 101.

CCD30-11 Deep Depletion Sensor High Performance CCD Sensor

TYPICAL PERFORMANCE

Pixel readout frequenc	У					20	-	5000	kHz
Output amplifier sensit	ivi	ty						. 1.5	$\mu V/e^-$
Peak signal								700	ke ⁻ /pixel
Spectral range						420	-	1080	nm
Readout noise (at 253	Κ,	20	kΗ	z)				. 4	e rms
QE at 700 nm								45	%
QE at 850 nm								47	%
Peak output voltage								1050	mV

GENERAL DATA

Format

Image area .					26.6 x 6.7	mm
Active pixels (H	۱)				. 1024	
(\	/)				256	
Pixel size					. 26 x 26	μm

Package

Package size .								32.8	39	x 2	0.07	mm
Number of pins												20
Inter-pin spacing											2.54	mm
Inter-row spacing	g									1	5.24	mm
Window materia					qι	ıartz	2 0	r re	eme	ova	ble (glass

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2v.com Internet: www.e2v.com Holding Company: e2v technologies plc

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see notes 1 and 2)	400k	700k	-	e ⁻ /pixel
Peak output voltage (unbinned)	-	1050	-	mV
Dark signal at 293 K (see note 3)	-	80k	160k	e ⁻ /pixel/s
Charge transfer efficiency: parallel serial		99.9999 99.9993	-	% %
Output amplifier sensitivity	1.3	1.8	2.3	μV/e ⁻
Readout noise at 243 K (see note 4)	-	4	6	rms e ⁻ /pixel
Readout frequency (see note 5)	-	20	5000	kHz
Response non-uniformity (std. deviation)	-	3	10	% of mean
Dark signal non-uniformity at 293 K (std. deviation) (see note 2)	-	8k	16k	e ⁻ /pixel/s
Binned column dark signal non-uniformity at 293 K (std. deviation)	-	2.4k	4.8k	e ⁻ /pixel/s
Output node capacity relative to image section	-	2.0	-	

ELECTRICAL INTERFACE CHARACTERISTICS

Electrode capacitances (measured at mid-clock level):

	Min	Typical	Max	
IØ/IØ interphase	-	2.0	-	nF
RØ/RØ interphase	-	70	-	pF
IØ/SS	-	11	-	nF
RØ/SS	-	185	-	pF
Output impedance	-	300	-	Ω

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. CCD characterisation measurement.
- 3. Measured between 233 and 253 K and at $V_{\rm SS}$ +9.0 V. The typical average (background) dark signal at any temperature T (kelvin) between 230 and 300 K is given by:

$$Q_d/Q_{d0} = 122T^3e^{-6400/T}$$

where Q_{d0} is the dark current at 293 K. Note that this is typical performance and some variation may be seen between devices.

- 4. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a $10~\mu s$ integration period.
- 5. Readout above 5000 kHz can be achieved but performance to the parameters given cannot be guaranteed.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Traps are counted if they have a capacity

greater than 200 e^- at 243 K.

 $\textbf{Slipped columns} \ \, \text{Are counted} \ \, \text{if they have an amplitude}$

greater than 200 e⁻.

Black spots Are counted when they have a responsivity

of less than 90% of the local mean signal illuminated at approximately half saturation.

White spots

Are counted when they have a generation rate 10 times the specified maximum dark signal generation rate at 293 K (measured between 233 and 273 K). The temperature dependence of white spot blemishes is the same as the average dark signal, i.e.:

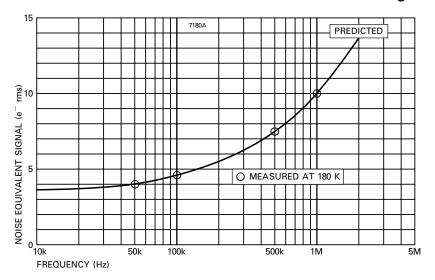
$$Q_d/Q_{d0} = 122T^3e^{-6400/T}$$

White column A column which contains at least 9 white

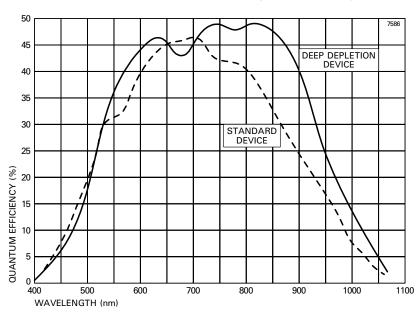
defects.

Black column A column which contains at least 9 black

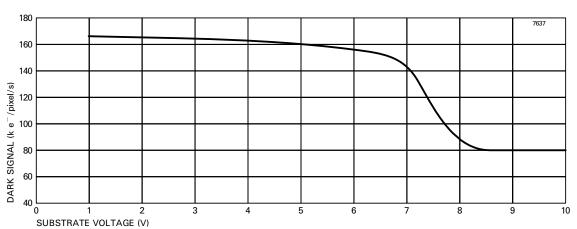
defects.


GRADE	0	1	2
Column defects: black or slipped	0	1	6
white	0	0	0
Black spots	9	16	80
Traps > 200 e ⁻	1	2	5
White spots	10	10	15

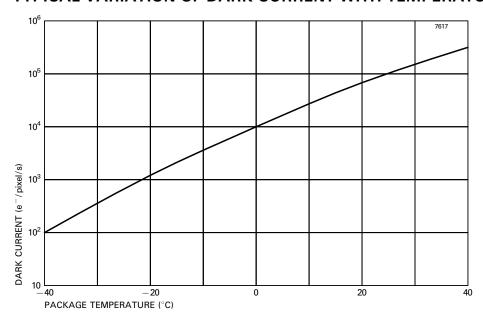
Minimum separation between


adjacent black columns 50 pixels

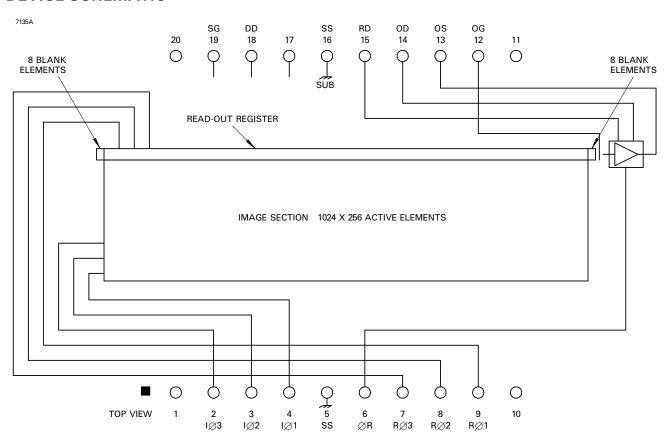
Note The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 243 K. The amplitude of white spots and columns will decrease rapidly with temperature.


TYPICAL OUTPUT CIRCUIT NOISE (Measured using clamp and sample)

TYPICAL SPECTRAL RESPONSE (No window)



TYPICAL VARIATION OF DARK SIGNAL WITH SUBSTRATE VOLTAGE



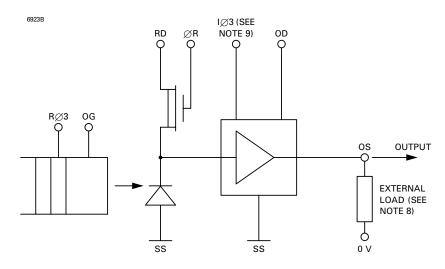
© e2v technologies 100006, page 3

TYPICAL VARIATION OF DARK CURRENT WITH TEMPERATURE

DEVICE SCHEMATIC

100006, page 4 © e2v technologies

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

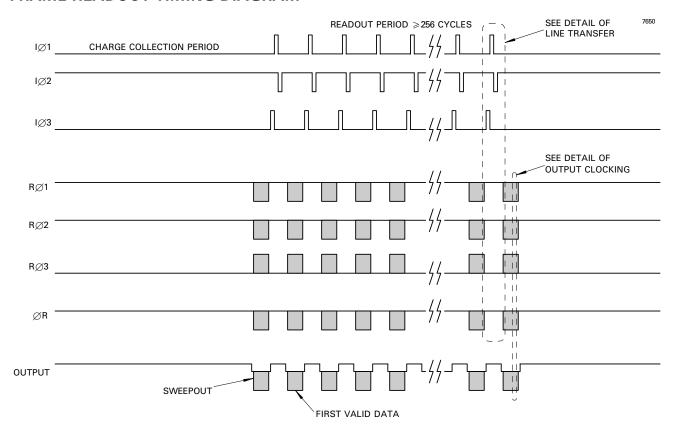

				SE AMPLIT VEL (V) (se	MAXIMUM RATINGS	
PIN	REF	DESCRIPTION	Min	Typical	Max	with respect to $V_{\rm SS}$
1	-	No connection		-		-
2	IØ3	Image section, phase 3 (clock pulse)	8	12	15	<u>+</u> 20 V
3	IØ2	Image section, phase 2 (clock pulse)	8	12	15	<u>±</u> 20 V
4	IØ1	Image section, phase 1 (clock pulse)	8	12	15	<u>+</u> 20 V
5	SS	Substrate	0	9	10	ı
6	ØR	Output reset pulse	8	12	15	<u>+</u> 20 V
7	RØ3	Readout register, phase 3 (clock pulse)	8	11	15	<u>±</u> 20 V
8	RØ2	Readout register, phase 2 (clock pulse)	8	11	15	<u>+</u> 20 V
9	RØ1	Readout register, phase 1 (clock pulse)	8	11	15	<u>+</u> 20 V
10	-	No connection		see note	7	-
11	-	No connection		see note	7	-
12	OG	Output gate	1	3	5	<u>+</u> 20 V
13	OS	Output transistor source		see note	8	-0.3 to +25 V
14	OD	Output drain	27	29	32	-0.3 to +25 V
15	RD	Reset transistor drain	15	17	19	-0.3 to +25 V
16	SS	Substrate	0	9	10	-
17	-	No connection		-		-
18	DD	Diode drain	22	24	25	-0.3 to +25 V
19	SG	Spare gates	0	0	V _{SS} + 19	±20 V
20	-	No connection		-		-

If all voltages are set to the 'typical' values, operation at or close to specification should be obtained. Some adjustment within the minimum - maximum range specified may be required to optimise performance.

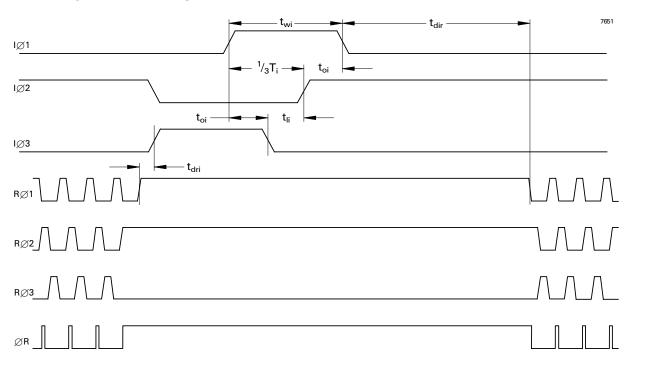
Voltage between pairs of pins: OS to OD \pm 15 V.

Maximum current through any source or drain pin: 10 mA.

OUTPUT CIRCUIT

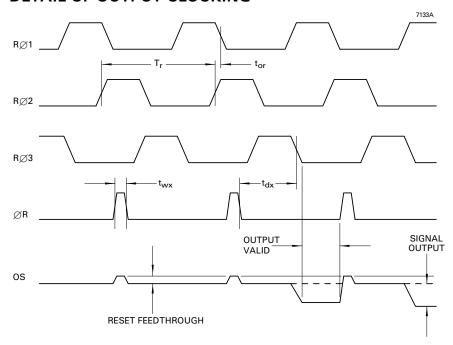


NOTES


- 6. Image section pulse low levels 0 \pm 0.5 V; other pulse low levels I \varnothing low +1 V.
- 7. There are no temperature sensing diodes in the CCD30-11.
- 8. Not critical; can be a 1 5 mA constant current source, or 5 10 $k\Omega$ resistor.
- 9. The amplifier has a DC restoration circuit, which is activated internally whenever IØ3 is pulsed high.

© e2v technologies 100006, page 5

FRAME READOUT TIMING DIAGRAM


DETAIL OF LINE TRANSFER

100006, page 6

⊚ e2v technologies

DETAIL OF OUTPUT CLOCKING

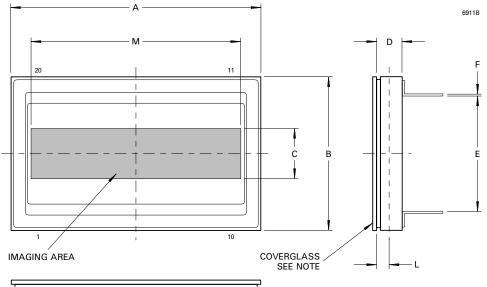
LINE OUTPUT FORMAT

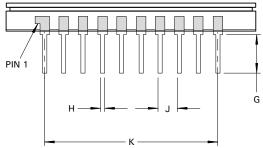
8 BLANK
1024 ACTIVE OUTPUTS

7130A

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	10	20	see note 10	μs
t _{wi}	Image clock pulse width	5	10	see note 10	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	0.5	1.0	0.5t _{oi}	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	1.0	0.5t _{oi}	μs
t _{oi}	Image clock pulse overlap	1	2	0.2T _i	μs
t _{li}	Image clock pulse, two phase low	1	5	0.2T _i	μs
t _{dir}	Delay time, I∅ stop to R∅ start	3	10	see note 10	μs
t _{dri}	Delay time, R∅ stop to I∅ start	1	2	see note 10	μs
T _r	Output register clock cycle period	200	see note 11	see note 10	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.2T _r	ns
t_{rx} , t_{fx}	Reset pulse rise and fall times	20	0.5t _{rr}	0.2T _r	ns
t _{dx}	Delay time, ⊘R low to R⊘3 low	30	0.5T _r	0.8T _r	ns


NOTES


- 10. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.
- 11. As set by the readout period.

© e2v technologies 100006, page 7

OUTLINE

(All dimensions without limits are nominal)

Outline Note

The device is normally supplied with a temporary glass window for protection purposes. It can also be supplied with a fixed, quartz or fibre-optic window where required.

Ref	Millimetres
A	32.89 ± 0.38
В	20.07 ± 0.25
С	6.7
D	3.30 ± 0.33
Е	15.24 ± 0.25
F	$0.254 + 0.051 \\ - 0.025$
G	5.2
Н	0.46 ± 0.05
J	2.54 ± 0.13
K	22.86 ± 0.13
L	1.65 ± 0.56
М	26.6

ORDERING INFORMATION

Options include:

- Temporary Quartz Window
- Permanent Quartz Window
- Temporary Glass Window

For further information on the performance of these and other options, please contact e2v technologies.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:-

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (pins 2, 3, 4, 6, 7, 8, 9, 12, 19) but not to the other pins.

HIGH ENERGY RADIATION

Device characteristics will change when subject to ionising radiation.

Users planning to operate CCDs in high radiation environments are advised to contact e2v technologies.

TEMPERATURE LIMITS

								Min	Typical	Max	
Storage								73	-	373	Κ
Operating								73	233	323	Κ
Operation or storage in humid conditions may give rise to ice											

on the sensor surface on cooling, causing irreversible damage.

Maximum device heating/cooling 5 K/mir

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.