TELEDYNE C2V | Semiconductors

Everywhere you look

UCTORS EV12AQ600 / EV12AQ605 Quad 12-bit 1.6 GSps ADC with embedded cross-point switch, Digitizing up to 6.4 GSps

OVERVIEW

EV12AQ60x is a quad channel 12-bit 1.6 GSps ADC. The built-in Cross-Point-Switch (CPS) allows multi-mode operation with the capability to interleave the four independent cores in order to reach higher sampling rates. In 4-channel operating mode, the four cores can sample, in phase, four independent inputs at 1.6 GSps. In 2-channel operating mode, the cores are interleaved by 2 in order to reach 3.2 GSps sampling rate on each of the two inputs. In 1-channel operating mode, a single input is propagated to each of the four cores which are interleaved by 4 in order to reach a sampling rate of 6.4 GSps. This high flexibility enables digitization of IF and RF signals with up to 3.2 GHz of instantaneous bandwidth.

With an extended input bandwidth above 6 GHz (EFPBW) the EV12AQ60x allows the sampling of signals directly in the C-band (4-8 GHz) without the need to translate the signal to baseband through a down-conversion stage.

The ADC includes a multiple ADC chained synchronization feature to enable design of multi-channel systems.

The device is built in a non-hermetic flip-chip package using HiTCE glass ceramic material in order to reach optimized RF performance and higher pin density.

This circuit is designed, manufactured and will be qualified to be compliant with ESCC (European Space Components Coordination) and QML-Y space requirements.

APPLICATIONS

- Earth Observation SAR payload
- Telecommunication MIMO satellite payload
- High-Speed Data Acquisition & Test Instrumentation
- Automatic Test Equipment
- Software Defined Radio/Microwave
- Ultra Wideband Satellite Digital Receivers
- Point-to-Point Microwave Receivers
- Machine Condition Monitoring Systems
- Time of Flight Mass-Spectrometry
- LiDAR (Light Detection and Ranging)
- High Energy Physics

FEATURES & MAIN CHARACTERISTICS

- 1 Vpp 100 Ω differential DC/AC coupled input voltage
- 100 Ω Differential input AC coupled clock
- Cross-point switch enabling 1, 2 or 4 channel mode at 6.4 GSps / 3.2 GSps / 1.6 GSps
- 4.5 / 6.5 GHz selectable analog input bandwidth (-3dB)
- Low Latency ESIstream serial link at 12.8 Gbps
- Clock and SYNC chaining

PERFORMANCE

Single core performance

4-channel mode at 1.6 GSps:							
Output Level	Fin (MHz)	ENOB (bit)	SNR (dB _{FS})	SFDR (dB _{FS})			
	100 (NZ1)	8.7/(9.6)*	54.6/(59.9)*	73.3			
-1 dB _{FS}	780 (NZ1)	8.7/(9.5)*	54.3/(59.4)*	73.4			
(NFPBW)	1580 (NZ2)	8.4/(9.1)*	53.4/(58.4)*	64.3			
	2380 (NZ3)	8.1/(8.8)*	51.3/(56.3)*	63.6			
	3180 (NZ4)	8.4/(9.2)*	52.5/(57.7)*	66.6			
-8 dB _{FS}	3980 (NZ5)	8.3/(9.2)*	52.2/(57.3)*	70.6			
(EFPBW)	4780 (NZ6)	8.2/(8.9)*	51.7/(56.8)*	61.8			
	5580 (NZ7)	8.1/(8.7)*	51.3/(56.3)*	67.1			

(*) Averaged simultaneous sampling by averaging the samples of the 4 cores when they are in phase.

SFDR at -8 dB_{FS} is better than 60 dB_{FS} up to the 6th Nyquist zone and ENOB is better than 8.0 bit.

SFDR at -8 dB_{FS}, without H2 and H3 harmonics, is better than 74 dB_{FS} up to the 8th Nyquist zone.

	- 111	leneaveu co	res periormane
1-channel m	node at 6.4 GS	ps:	
Output level	Fin (MHz)	ENOB (bit)	SFDR (dB _{FS})
-1 dB _{FS}	100 (NZ1)	8.6	66.2
	2380 (NZ1)	8.0	64.7
-8 dB _{FS}	3980 (NZ2)	7.9	53.2

Broadband performance at -12 dB

Interleaved cores performance

loading factor: 4-channel mode at 1.6 GSps over 760 MHz bandwidth

- NPR = 44 dB in 1st Nyquist (NFPBW) (at LF = -12 dB_{FS})

- NPR = 43 dB in 2nd Nyquist (NFPBW)
- NPR = 42 dB in 3rd Nyquist (EFPBW)
- NPR = 42 dB in 4th Nyquist (EFPBW)
- 1-channel mode at 6.4 GSps over 2560 MHz bandwidth
- NPR = 44 dB in 1st Nyquist (NFPBW)

Gain Flatness:

0.5 dB Gain Flatness in extended bandwidth is typically 4 GHz.

- Power supply: 3.3 V (analog), 2.5 V (I/O), 1.2 V (digital), 2.5V or 3.3 V (SPI output)
- Power consumption: 6.6 W
- SPI digital interface
- Manufacturing calibration sets for interleaving
- ADC Gain, Offset, Sampling delay adjustment
- Package: CBGA323 (HiTCE) 16x16 mm pitch 0.80 mm
- Extended temperature range: Tc -55 °C / Tj +125 °C

1 INTRODUCTION

This document is the Datasheet of 12-bit 4x1.6 GSps ADC with embedded Cross Point Switch (P/N EV12AQ60x)

Table of contents

1	INT	TRODUCTION	2
2	DE	SCRIPTION	7
z	SPI	ECIFICATIONS	9
5			
	3.1	ABSOLUTE MAXIMUM RATINGS	9
	3.2	QUALIFICATION REQUIREMENTS	11
	3.3	RECOMMENDED CONDITIONS OF USE	11
	3.4	EXPLANATION OF TEST LEVELS	11
	3.5	ELECTRICAL CHARACTERISTICS FOR SUPPLIES, INPUTS AND OUTPUTS	12
	3.6	CONVERTER CHARACTERISTICS	15
	3.7	AC ANALOG INPUTS	17
	3.8	DYNAMIC PERFORMANCE - 4-CHANNEL MODE – 1.6 GSPS	18
	3.9	DYNAMIC PERFORMANCE - 2-CHANNEL MODE – 3.2 GSPS	25
	3.10	DYNAMIC PERFORMANCE - 1-CHANNEL MODE – 6.4 GSPS	34
	3.11	I RANSIENT, SWITCHING AND TIMING CHARACTERISTICS	42
	3.12	LATENCY	45
	3.13		46
	3.14	DEFINITION OF TERMS	47
4	PA	CKAGE DESCRIPTION	49
	4.1	Type /Outline	49
	4.2	PINOUT TOP VIEW	52
	4.3	RELATIVE SKEW FOR SERIAL LINKS VIEW	53
	4.4	THERMAL CHARACTERISTICS	54
	4.5	PINOUT TABLE	55
5	тн	ΕΩRY ΩΕ ΩΡΕΒΑΤΙΩΝ	60
- -			
6	DIC	JITAL RESET AND START-UP PROCEDURE	61
7	SEI	RIAL PERIPHERAL INTERFACE (SPI)	61
	7.1	SPI LOGIC COMPATIBILITY	62
	7.2	SPI Read / Write command	62
	7.3	REGISTER MAP	63
8	FU	NCTIONALITIES DESCRIPTION	68
	81		68
	8.2	ADC SYNCHRONIZATION SIGNAL (SYNCTRIGP, SYNCTRIGN)	70
	83		70
	8.4	CLOCK INTERLEAVING	
	8.5		73
	8.6	ANALOG BANDWIDTH	
	8.7	SYNC. SLOW AND FAST OUTPUT CLOCKS (SSO. CLKOUT)	78
	8.8	INPUT SIGNAL DYNAMIC IN-RANGE DETECTION (INRANGE MODE)	80
	8.9	TRIGGER MODE	80
	8.10	SERIAL OUTPUT FRAME CONFIGURATION	81
	8.11	Serial Link decimation	84
	8.12	Test modes and Data modes	85
	8.13	CRC CHECKING	87
	8.14	CHIP ID	88
	8.15	Single event protection	88
	8.16	SDA OPERATION	89
	8.17	DIE JUNCTION TEMPERATURE MONITORING DIODE	91
	8.18	DEFAULT MODE	93
9	ΑΡ	PLICATION INFORMATION	94
-			

9.1	Power supplies	
9.2	High Speed Serial Interface	
9.3	INTERLEAVING PERFORMANCE IMPROVEMENT	
10 CH	HARACTERIZATION RESULTS	109
10.1	POWER CONSUMPTION	
10.2	Analog Bandwidth and Band flatness	
10.3	CROSS-TALK	
10.4	VSWR	
10.5	INL	
10.6	DNL	
10.7	DYNAMIC PERFORMANCES VERSUS ANALOG INPUT FREQUENCIES	
10.8	Performance versus Clock Input Frequency	
10.9	Performance versus Clock Input Power	
10.1	0 Dynamic Performance versus Temperature	
10.1	1 DYNAMIC PERFORMANCE VERSUS POWER SUPPLIES	
10.1	2 IMD3 – 3rd order InterModulation Distortion	
10.1	3 NPR – Noise Power Ratio	
11 AC	Q600 ORDERING INFORMATION	136
12 AC	Q605 ORDERING INFORMATION	137
13 RE	EVISION HISTORY	

Table of illustrations

Figure 1: Quad 12-bit ADC with 12.8 Gbps serial link	7
Figure 2: Analog input scheme regarding max ratings	10
Figure 3 Serial link eye diagram	44
Figure 4: SPI timing diagram	45
Figure 5: Latency example 1	46
Figure 6: Latency example 2	46
Figure 7: Package cross-section	49
Figure 8: Package outline for Pb90Sn10 balls	50
Figure 9: Package outline for SAC305 balls	52
Figure 10: Pinout top view	52
Figure 11: Skew mapping (values are in ps)	53
Figure 12: Start-up sequence when using the SPI interface	61
Figure 13: SPI writing	62
Figure 14: SPI reading	62
Figure 15: Different Internal blocks	68
Figure 16: CPS configurations	70
Figure 17: Clocks for four cores interleaved	71
Figure 18: Clocks for four cores aligned	72
Figure 19: Clocks for two cores interleaving - configuration 1: Interleaved of B and A	72
Figure 20: Clocks for two cores interleaving - configuration 2: Interleaving of A and C	72
Figure 21: Differential analog input implementation (DC coupled)	76
Figure 22: Trigger mode timing diagram in serial interface	81
Figure 23: Timing diagram in serial interface in 1-channel mode	82
Figure 24: Timing diagram in serial interface in 2-channel mode	83
Figure 25: Timing diagram in serial interface in 4-channel mode	83
Figure 26: Output data on each serial link	84
Figure 27: Powering down 1 link gives a x2 decimation	84
Figure 28: Chronogram of the Ramp test mode	85
Figure 29: Junction temperature monitoring diode system	91
Figure 30: Diode voltage vs temperature for 3 different input currents	91
Figure 31: Voltage vs temperature.	92
Figure 32: Power Supplies decoupling scheme	94
Figure 33: ESIstream system example using EV12AQ60x ADC	95
Figure 34: TX 14-bit scrambling process principle	95
Figure 35: TX 16-bit encoding process principle	95
Figure 36: Synchronization sequence	96
Figure 37: Frame sent for PRBS initialization	96
Figure 38: LFSR operation	97
Figure 39: Frame format after encoding	97
Figure 40: Single ADC standard serial link synchronization principle	
Figure 40: Multi-lanes synchronization time chart principle	
Figure 11 – Deterministic latency principle	
Figure 12 – Single ADC deterministic latency principle	
Figure 13 – Single ADC Deterministic latency chronogram	101
Figure 46: SYNC signals distribution topologies	
Figure 47: SYNC FLAG procedure	
Figure 48: Current consumption and power dissipation versus supply voltage and standby mode	
Figure 49: Current consumption and power dissipation versus temperature and standby mode	
Figure 50: Nominal Bandwidth	
Figure 51: Extended Bandwidth	
Figure 52: Cross-talk between analog input channels	
Figure 53. Cross-talk between analog inputs and Clock	
Figure 54. Cross-talk between serial outputs	
Figure 55. VSWK on analog inputs and Clock	
Figure 57: INI 4 shannel mede 1.6 CSpc	
Figure 57. INL - 4-Glatillet House - 1.0 GSpS	113
Figure 50. INL - 2-Channel mode $= 3.2 \text{ GSps}$	113
Figure 60: $DNI = 4$ -channel mode = 1.6 GSpc	113
Figure 61: DNL - 4-channel mode - 3.2 GSps	114 111
т igure o т. Dril - 2-onanner moue - 3.2 Сорз	

Figure 62: DNL - 1-channel mode – 6.4 GSps	114
Figure 63: Performance vs Analog input frequencies - 4-channel mode – 1.6 GSps	115
Figure 64: Performance vs Analog input frequencies - 2-channel mode - 3.2 GSps	116
Figure 65: Performance vs Analog input frequencies - 2-channel mode - 3.2 GSps	117
Figure 66: Performance vs Analog input frequencies - 1-channel mode - 6.4 GSps	118
Figure 67: Performance vs Analog input frequencies - 1-channel mode – 6.4 GSps	119
Figure 68: Spectra at Analog input frequency = 98 MHz, Pout = -1 dBFS	120
Figure 69: Spectra at Analog input frequency end of 1 st Nyquist zone (mode dependent). Pout = -1 dBFS	121
Figure 70: Spectra at Analog input frequency = 6378 MHz. Pout = -12 dBFS	122
Figure 71: Spectra at Analog input frequency = 98 MHz, Pout = -1 dBFS	122
Figure 72: Performance vs Fclock - 4-channel mode – 1.6 GSps	123
Figure 73: Performance vs Fclock - 1-channel mode – 6.4 GSps	124
Figure 74: Performance vs Pclock - 4-channel mode – 1.6 GSps	125
Figure 75: Performance vs Temperature – vsFin - Pout = -1 dBFS	126
Figure 76: Performance vs Temperature - Fin= 98 MHz - Pout= -1 dBFS	127
Figure 77: Performance vs Temperature - Fin= 2378 MHz - Pout= -1 dBFS	128
Figure 78: Performance vs Temperature - Fin= 98 MHz - Pout= -1 dBFS	129
Figure 79: Performance vs Temperature - Fin= 2378 MHz - Pout= -1 dBFS	130
Figure 80: Performance vs Power Supply - Pout= -1 dBFS	131
Figure 81: Performance vs Power Supply - Pout= -1 dBFS	132
Figure 82: Performance vs Power Supply - Pout= -1 dBFS	133
Figure 83: IMD3 – Analog Input frequency 100 MHz – Pout = -7 dBFS	134
Figure 84: IMD3 – Analog Input frequency 3100 MHz – Pout = -9 dBFS	134
Figure 85: IMD3 – Analog Input frequency 5900 MHz – Pout = -14 dBFS	134
Figure 86: 1 st Nyquist NPR versus loading factor. Fs = 1.6 GSps	135
Figure 87: 2 nd Nyquist NPR versus loading factor. Fs = 1.6 GSps	135
Figure 88: 3 rd Nyquist NPR versus loading factor. Fs = 1.6 GSps.	135
Figure 89: 4th Nyquist NPR versus loading factor. Fs = 1.6 GSps.	135

2 DESCRIPTION

Figure 1: Quad 12-bit ADC with 12.8 Gbps serial link

EV12AQ60x is a quad 12-bit 1.6 GSps ADC featuring a built-in cross-point switch (controlled through the SPI) allowing 1, 2 or 4 channel digitizing at respectively 6.4 GSps, 3.2 GSps or 1.6 GSps sampling rate.

The four ADC cores can operate in phase or interleaved (option controlled though the SPI). External clock must be provided at four times the individual sampling rate.

The architecture uses four high sampling rate single cores (up to 1.6 GSps) without interleaving thus providing high level of spectral purity.

Data is output on a short latency serial link at up to 12.8 Gbps, using ESIstream protocol.

ADC synchronization is possible through SYNCTRIG pin and multiple ADC synchronization is simplified thanks to the ability of SYNC chaining through SYNCO.

Digital SPI CMOS input levels can be in 2.5 V or 3.3 V logic compatibility. Digital SPI CMOS output levels can be configured in 2.5 V or 3.3 V logic compatibility by V_{CC_SPI} and V_{SPI_SEL} (see -).

Tuning and functionalities are controlled through a Serial Peripheral Interface (SPI):

Functionalities controlled through the SPI are:

- Test mode activation and selection (ramp, PRBS, ...)
- Clocking modes: 4 ADCs cores sampling simultaneously, 2 ADCs cores sampling simultaneously in opposition with 2 others, 4 ADCs cores interleaved.
- Clocking features: enabled/disabled CLKOUT, SSO and SYNCO outputs (in order to save power if these features are not needed).
- Inputs selection: 4 ADCs cores interleaved (1-channel mode) and driven by the same input IN0 (or IN3), 2 ADCs cores interleaved (2-channel mode) driven simultaneously by IN0 (and IN3), 4 ADCs cores (4-channel mode) driven simultaneously by IN0, IN1, IN2 and IN3.
- Analog input bandwidth: 4.5 GHz (nominal) or 6.5 GHz (extended).
- Sampling Delay Adjust enabled (for fine tuning of aperture delay) or disabled (recommended for clock Jitter Reduction)
- Factory calibration sets (Offset, Phase, Gain) selection for performance optimization (1channel and 2-channel mode). 2 sets available for AQ605 and 4 sets for AQ600.
- Customization of calibration (Offset, Phase, Gain)

- Sync/Trigger mode (in Trigger mode the input on SYNCTRIG is propagated with the same delay as the Analog input, in Sync mode the input on SYNCTRIG is used to reinitialize internal clock dividers of the ADC, SYNCO is a synchronized copy of SYNCTRIG, PRBS are reset by a SYNC pulse).
- Input signal dynamic in-range detection
- Serial output frame configuration (12-bit data parity information, 12-bit data MSB/LSB first, frame order identification with PRBS sequence)
- Swing Adjust: Output swing of both serial links and timer CML or LVDS buffers is reduced by 30% for power dissipation reduction purpose.
- Output buffer impedance adjust (trim by a range of 20%) to improve transmission.
- 12.8 Gbps Serial link polarity can be inverted.

The ADC features internal DACs controlled though the SPI for tuning:

- Sampling Delay Adjust 12-bit with 150 ps tuning range :
- 2 bit for coarse step (~ 37 ps/step)
- 10 bit for fine step (~ 37 fs/step)
 - Gain Adjust: 4096 steps (12-bit DAC), 456 LSB full scale variation, step of 0.11 LSB.
 - Offset Adjust: 512 steps (9-bit DAC), ± 75 LSB offset variation, step of 0.29 LSB.
 - Phase Adjust: 512 steps (9-bit DAC), ± 4.5 ps phase variation, step of 17 fs.
 - Analog Input impedance termination trimming (5 bit DAC, 1.7 Ω step) common to all analog inputs.
 - Input common mode trimming (5-bit DAC) common to all analog inputs, step of 5 mV.
 - CML output impedance termination trimming (2-bit DAC) by lane, 14 Ω step.

3 SPECIFICATIONS

3.1 Absolute Maximum Ratings

- -

- -

Absolute maximum ratings are limiting values (referenced to GND = 0 V), to be applied individually, while other parameters are within specified operating conditions.

Exposure above those conditions may cause permanent damage. Long exposure to maximum ratings may affect device reliability

. .

- Absolute Maximum ratings							
_		Val					
Parameter	Symbol	Min	Max	Unit			
Analog supply voltage 3.3V	V _{CCA}	AGND – 0.3	4	V			
Output supply voltage 2.5V	Vcco	GNDO - 0.3	3.1	V			
Digital supply voltage 1.2V	V _{CCD}	DGND – 0.3	1.5	V			
SPI output supply voltage 2.5V or 3.3V	Vcc_spi	DGND – 0.3	4	V			
V _{SPI_SEL} supply voltage	V _{SPI_SEL}	DGND – 0.3	4	V			
Analog input swing (mode ON)	INxP – InxN (x=0,1, 2 or 3)		4.8	Vppdiff			
Analog input swing (mode OFF)	INxP – InxN (x=0,1, 2 or 3)		Note (1)	Vppdiff			
Analog input peak voltage	INxN or INxP (x=0,1, 2 or 3)	AGND – 0.3	V _{CCA} + 0.3	V			
Clock input swing (mode ON)	Vclkp - Vclkn		4	Vppdiff			
Clock input swing (mode OFF)	V _{CLKP} - V _{CLKN}		Note (1)	Vppdiff			
Clock input voltage	VCLKP OR VCLKN	AGND – 0.3	V _{CCA} + 0.3	V			
SYNC input swing (mode ON)	VSYNCP - VSYNCN		4	Vppdiff			
SYNC input swing (mode OFF)	VSYNCP - VSYNCN		Note (1)	Vppdiff			
SYNC input peak voltage	V _{SYNCP} or V _{SYNCN}	AGND – 0.3	V _{CCA} + 0.3	V			
SPI input voltage	CSN, SCLK, RSTN, MOSI	DGND - 0.3	V _{CC0} + 0.3	V			
Max Junction Temperature	T _{JMAX}		150	°C			
Storage Temperature	T _{stg}	-65	150	°C			
VDIODEA input voltage to prevent leakage (VDIODEC=GND)	VDIODEA	-0.3	0.30	V			
Maximum input current on DIODE	IDIODEA		1	mA			

Note (1): For cold sparing application, see application note AN 60S 217359

All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Input buffers and associated ESD protection have been designed to allow "cold sparing".

Figure 2: Analog input scheme regarding max ratings

3.2 **Qualification requirements**

This circuit is designed and manufactured and will be qualified to be compliant with space requirement (ESCC9000 and QML-Y specifications).

- Qualification information							
Parameter	Symbol	Value	Unit				
Die operating life at Tj = +125 °C	HTOL	10	Years				
Die operating life at Tj = +110 °C	HTOL	17	Years				
ESD protection (HBM)	HBM	2000	V				
Latch up (JEDEC 78A)	LU	+/- 100	mA				

Note 1: Tj refers to the hot spot junction temperature on the die.

3.3 **Recommended conditions of use**

Recommended conditions of use

Parameter	Symbol	Comments	Recommended Value	Unit
Analog supply voltage	Vcca	Analog Part	3.3 V	V
Output supply voltage	Vcco	Output buffers	2.5 V	V
Digital supply voltage	Vccd	Digital buffers	1.2 V	V
SPI output supply voltage	V _{CC_SPI}		2.5 V ⁽¹⁾ 3.3 V ⁽¹⁾	V
Maximum differential input voltage (Full Scale)	Vin -Vinn		1 ⁽³⁾ 1	Vpp dBm
Clock input power level	PCLK PCLKN		6	dBm
Digital CMOS input	VD	Vil Vih	0 2.5 or 3.3 ⁽²⁾	V
External Clock frequency	Fc		≤ 6.4	GHz
Operating Temperature Range	T _C ; T _J		-55 °C <t<sub>C ; T_J< 125 °C</t<sub>	°C

Note 1: Depending on SPI output buffer logic compatibility (refer to §7.1)

Note 2: Buffer compatible with both logic levels (refer to §7.1)

-

Note 3: Above this value the ADC will saturate. It is recommended to provide a signal below -1 dBFS to avoid this saturation.

3.4 **Explanation of test levels**

Explanation of test levels

Test level	Comment
1A	100% tested over specified temperature range and specified power supply range, Fclock = 6 GHz
1B	100% tested over specified temperature range at typical power supplies, Fclock = 6 GHz
1C	100% tested at room temperature over specified supply range, Fclock = 6 GHz
1D	100% tested at room temperature at typical power supplies, Fclock = 6 GHz
2	100% production tested in 25 °C environment and samples tested at specified temperatures.
3	Samples tested only at specified temperature.
4	Parameter value is guaranteed by characterization testing (thermal steady-state conditions at specified temperature), Fclock = 6.4 GHz unless specified otherwise
5	Parameter value is only guaranteed by design

Only Min and Max values are guaranteed.

Interleaving performance (1-channel and 2-channel mode) are given for IN0 only. For IN3, interleaving calibration must be done to achieve those performance.

3.5 **Electrical Characteristics for supplies, Inputs and Outputs**

Unless otherwise specified:

Typical values are given for typical supplies V_{CCA} = 3.3 V, V_{CCD} = 1.2 V, V_{CCO} = 2.5 V at room temperature with Fclk = 6GHz and with nominal mode of the SPI (SDA, CLKOUT and SYNCO disabled). Minimum and Maximum values are given over temperature and power supplies.

- Electrical characteristics for Supplies, Inputs and Outputs								
Parameter	Test Level AQ600/AQ605	Symbol	Min	Тур	Мах	Unit	Note	
RESOLUTION			12			bit		
POWER REQUIREMENTS								
Power Supply voltage								
Analog		Vcca	3.20	3.3	3.40			
Output		Vcco	2.35	2.5	2.65			
Digital		V _{CCD}	1.1	1.2	1.3	V	(1)	
SPI output		V _{CC_SPI}	2.35 3.20	2.5 3.3	2.65 3.4			
Power Supply current			0.20	0.0	0.1		1	
Analog	1A/1C	ICCA	1400	1675	2035			
Output								
Full swing	1A/1C	lcco		365			$\langle \mathbf{O} \rangle$	
Reduced swing	1A/1C	Icco	300	330	410	mA	(2)	
Digital	1A/1C	Ісср	150	195	300			
SPI output	1A/1C	ICC SPI	-2.5	0.2	2.5			
Power Supply current standby mode					1			
Analog	1A/1C	ICCA	400	510	750			
Output	1A/1C	lcco	10	20	30			
Digital	1A/1C	Ісср	10	20	60	mA		
SPI output	1A/1C	ICC_SPI	-2.5	0.2	2.5			
Power dissipation - Full power mode								
Full swing				6.76				
Reduced swing	1A/1C	PD	5.5	6.65	7.95	W	(2)	
Stand-by mode	1A/1C		1.40	1.77	2.70			
Maximum number of power-up		NbPWRup	1E6				(3)	
ANALOG INPUTS		· · ·					. ,	
Common mode compatibility for analog								
inputs		AC	C or DC				(4)	
Input Common Mode (default register	1A/1C)//014	4 40	4.00	4 70			
value)		VICIVI	1.48	1.63	1.78	V		
Full Scale Input Voltage range		V/IN pp		1000		mVpp		
on each differential input		ина-рр		1000		Diff		
Analog Input power Level		DIN		± 1		dBm		
(in 100 Ω differential termination)		FIN		T 1		ubiii		
Input leakage current for $V_{INN} = V_{INP} =$	1D	IIN	40	130	220	ıιΔ		
Common Mode + 75mV			40	150	220	μΛ		
Input Resistance (differential)			80	100	120	0		
Before digital trimming through SPI	4	RIN			0		(5)	
Atter digital trimming through SPI at			98	100	102	Ω	(3)	
given temperature								
Cross-talk between inputs @ Fin=2.4	4			70		dB		
GHz								

Quad 12-bit 1.6 GSps ADC								
Parameter	Test Level AQ600/AQ605	Symbol	Min	Тур	Мах	Unit	Note	
CLOCK INPUTS (CLKIN)								
Source Type	Source Type Low Phase noise Differential Sinewave							
Clock input common mode voltage	1A/1C	Vсм	2.4	2.6	2.8	V		
Clock input power level in 100 Ω	4	Pclk, clkn	-4	6	+10	dBm		
Clock input voltage on each single ended input	4	V _{CLK} or V _{CLKN}	±140	±450	±700	mV		
Clock input voltage into 100 Ω differential clock input	4	Vclk - Vclkn	0.56	1.8	2.8	Vpp		
Clock input minimum slew rate (square or sinewave clock)	5	SRclk	8	12		GV/s		
Clock input capacitance (die + package)	5	Ссік		1		pF		
Clock input resistance (differential)	1B/1D	Rclk	90	105	115	Ω	(5)	
Clock Jitter (max. allowed on clock source) For 6.4 GHz sinewaye analog input	4	Jitter		70		fsrms	(6)	
Clock Duty Cycle	4	Duty Cycle	45	50	55	%		
CLOCK output (CLKOUT)								
Logic Compatibility				CML				
50 Ω transmission lines.100 Ω (2 x50 Ω	differential tern	nination)						
Output levels : swing adjust off = full swi	ng	,						
Logic low	1A/1C	Vol		V _{CCA} – 0.31	V _{CCA} – 0.26	V		
Logic high	1A/1C	V _{он}	V _{CCA} – 0.20	V _{CCA} - 0.14		V		
Differential output	1A/1C	Voн- Vol	140	175	220	mVp		
Common mode	1A/1C	V _{OCM}	V _{CCA} – 0.29	V _{CCA} - 0.22	V _{CCA} - 0.19	V		
Output levels : swing adjust on = reduced	d swing							
Logic low	1A/1C	Vol		V _{CCA} – 0.17	V _{CCA} - 0.12	V		
Logic high	1A/1C	Vон	V _{CCA} – 0.15	V _{CCA} - 0.09		V		
Differential output	1A/1C	Voh- Vol	70	90	110	mVp		
Common mode	1A/1C	Vосм	V _{CCA} – 0.2	V _{CCA} - 0.13	Vcca-0.1	V		
SYNC, SYNCN Signal								
Input Voltages to be applied Swing	1A/1C	Vih- Vil	80	350	600	mV		
	1A/1C	VICM	1.0	1.3	1.6	V		
input capacitance	5	CSYNC		1		pF		
SYNCTRIGP, SYNCTRIGN input resistance	1B/1D	R _{SYNC}	98	118	134	Ω		

Parameter	Test Level AQ600/AQ605	Symbol	Min	Тур	Max	Unit	Note
Digital CMOS signals (CSN, SCL	K, RSTN, MOSI, M	ISO)					
Low level threshold of Schmitt	1A/1C	Vil			0.7	V	
High level threshold of	1A/1C	Vih	1.70			v	
Schmitt Trigger		•				•	-
hysteresis	5	Vhystc	0.10 * V _{cco}			V	
CMOS low level input current (Vinc=0 V) • Csn, Rstn • Other pins		lilc			130 0.300	μA	(7)
CMOS high level input current (Vinc=VCCO) • Csn, Rstn • Other pins		lihc			70 70	μA	. (7)
CMOS low level output voltage (lolc = 3 mA)	1A/1C	Volc			0.20 * Vcc_spi	V	
CMOS high level output voltage (lohc = 3 mA)	1A/1C	Vohc	0.8 * Vcc-spi			V	
LVDS OUTPUTS (SSO, SYNCO)							
Logic Compatibility 50 Ω transmission lines, 100 Ω	 (2 x 50 Ω) differen - full swing	ntial termina	ation	L	VDS		
Logic low	1A/1C	V _{OL}			1, 460	V	
Logic high	1A/1C	V _{он}	1. 16			V	
Differential output	1A/1C	Voн- Vol	200	310	375	mV	
Common mode	1A/1C	Vосм	1.05	1.30	1.5/1.425	V	(8)
Output levels : swing adjust on	= reduced swing	.,, .,					
Differential output	1A/1C	VOH- VOL	80	210	275	mV	
Common mode	1A/1C	VOCM	1.1		1.55	V	
SERIAL LINK OUTPUTS (ASLX,E Logic Compatibility 50 Ω transmission lines, 100 Ω Output levels : swing adjust off	3SLx,CSLx,DSLx) v (2 x 50 Ω) differen = full swing	vith x=0 or 2 ntial termina	L CML ation				
Logic low	4/4	V _{OL}		V _{cco} – 0.65	Vcco – 0.55	V	
Logic high	4/ 4	Vон	Vcco-0.42	Vcco- 0.324		V	
Differential output	4/ 4	Voн- Vol	260	325	400	mVp	
Common mode	4/4	Vосм	$V_{CCO} - 0.6$	V _{cco} - 0.45	$V_{CCO} - 0.4$	V	
Output levels : swing adjust on :	= reduced swing						
Logic low	4/ 4	Vol		V _{cco} – 0.45	Vcco-0.35	V	
Logic high	4/ 4	Vон	Vcco-0.32	V _{cco} - 0.22		V	
Differential output	4/ 4	Voh- Vol	170	215	280	mVp	
Common mode	4/4	Vосм	Vcco-0.45	V _{cco} - 0.35	Vcco-0.25	V	

Notes:

1. V_{CC_SPI} supply value is defined according to the chosen SPI input signals level. Refer to §7.1.

- Enabling either SDA or other features (CLKOUT, SSO, SYNCO) increases power consumption by 170 mW (51 mA on V_{CCA}). Maximum power consumption is estimated at Tj = 125 °C, maximum supplies value and all features enabled.
- 3. Maximum number of power-up is limited by the maximum number of OTP memory cells reading.
- 4. The DC analog common mode voltage is provided by the ADC.
- 5. For optimal performance in term of VSWR, characteristic impedance of input traces on the PCB must be differential 100 $\Omega \pm 5\%$ and analog input impedance must be digitally trimmed to cope with process deviation (see chapter 8.5.6).
- 6. Jitter calculation integrated up to 6.4 GHz.
- 7. Vil & Vih being referenced to Vcco (see simplified electrical schematics -) the following equations apply: Vih_min = 0.65*Vcco_max & Vil_max = 0.3* Vcco_min
- 8. V_{OCM} is 1.425 V max with VCCA = 3.3 V max

3.6 Converter Characteristics

Unless otherwise specified:

- Typical values are given for typical supplies VCCA = 3.3 V, VCCD = 1.2 V, VCCO = 2.5 V at room temperature with Fclk = 6.4 GHz and with nominal mode of the SPI (SDA, CLKOUT and SYNCO disabled).
- Minimum and Maximum values are given over temperature and power supplies with Fclk = 6 GHz.
- ADC output level -1 dBFS.
- Clock input differentially driven @ +1 dBm at ADC input.
- Input common mode is trimmed using 2 different register values (see -): 0x1B for 1st, 2nd and 3rd Nyquist and default value for higher frequencies.
- Nominal bandwidth is selected for 1st and 2nd Nyquist and extended one is applied for other frequencies.

Parameter	Test Level AQ600/AQ605	Symbol	Min	Тур	Max	Unit	Note
	DC	ACCURA	CY				
Analog Input frequency = 100 MHz, -	1 dBFS						
Part to part Gain deviation	4	G	-0.5	0	0.5	dB	
Gain variation versus temperature	4	G(T)	-0.4		+0.1	dB	
DC offset before trimming through SPI	4	OFFSET	2011		2092	LSB	
DC offset mismatch	4	OFFSET M		+45/-35		LSB	
DC offset after trimming through SPI	4	OFFSET	2043	2047	2051	LSB	
Analog Input frequency = 100 MHz, -	1 dBFS, 1-Chanr	nel mode					
DNLrms	1A/1D	DNLrms		0.15	0.28	LSB	
Differential non linearity	1A/1D	DNL	-0.85	-0.5/+0.5	1.2	LSB	
INLrms	1A/1D	INLrms		0.6	1.4	LSB	
Integral non linearity	1A/1D	INL	-4.5	-1.75/+1.75	4.5	LSB	
Analog Input frequency = 100 MHz, -	1 dBFS, 2-Chani	nel mode					
DNLrms	4	DNLrms		0.2		LSB	
Differential non linearity	4	DNL	-0.7		0.9	LSB	
INLrms	4	INLrms		0.65		LSB	
Integral non linearity	4	INL	-2.5		2.5	LSB	
Analog Input frequency = 100 MHz, -	1 dBFS, 4-Chani	nel mode					
DNLrms	4	DNLrms		0.2		LSB	
Differential non linearity	4	DNL	-0.7		0.9	LSB	
INLrms	4	INLrms		0.65		LSB	

- Low frequency characteristics

Quad 12-bit 1.6 GSps ADC

Parameter	Test Level AQ600/AQ605	Symbol	Min	Тур	Max	Unit	Note
Integral non linearity	4	INL	-2.5		2.5	LSB	

_

3.7 AC Analog Inputs

Dynamic Characteristics

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Тур	Max	Note
Full Power Input Bandwidth						
Nominal Full Power Bandwidth (selected by SPI)	4	GHz		4.3		
Extended Full Band Power Bandwidth (selected by SPI)	4	GHz		6.5		
Gain Flatness (+/- 0.5 dB) (1)						
Nominal Gain Flatness bandwidth (selected by SPI)	4	GHz		1		
Extended Gain Flatness bandwidth (selected by SPI)	4	GHz		3.8		
Input Voltage Standing Wave Ratio						
up to 2.4 GHz	4				< 1.3:1	
up to 6 GHz	4	VOVIR			< 2:1	

Gain flatness is the bandwidth over which the difference between the gain and the DC gain is lower than 0.5 dB

Dynamic Performance - 4-channel mode - 1.6 GSps 3.8

	Tost Loval	Symbol	Мір Тур				
Parameter	AQ600/AQ605	Unit	AQ600/AQ605	Nominal	Without H2 – H3	Max	Note
SFDR - Spurious Free D	ynamic Range	- Single tone	e - 4-channel m	ode – 1.6 C	Sps		
At -1 dBFS output level	1 .	I	1		 _ _	1	1
Fin = 98 MHz	4			73.3	73.5		
Fin = 778 MHz	4	SIDI		73.4	75.2		
Fin = 1578 MHz	4	dBFS		64.3	66.8		
Fin = 2230 MHz	1A/1D		55/57	66.8			
Fin = 2230 MHz	1A/1D	H2 dBFS	56/60				
Fin = 2230 MHz	1A/1D	H3 dBFS	55/57				(1)(2)(3)(4)
Fin = 2378 MHz	4	-		63.6	69.7		
Fin = 3178 MHz	4	SFDR		55.9	69.0		
Fin = 3978 MHz	4			49.3	65.1		
Fin = 4778 MHz	4	dBF2		45.3	74.2		
Fin = 5578 MHz	4			48.2	73.1		
At -3 dBFS output level	1	I	1	I		l	1
Fin = 98 MHz	4	-		67.3	69.2		
Fin = 778 MHz	4			71.1	72.8		
Fin = 1578 MHz	4			68.5	68.5		
Fin = 2230 MHz	4	SFDR		69.2			
Fin = 2378 MHz	4			69.6	71.0		(1)(2)(3)(4)
Fin = 3178 MHz	4	dBF2		64.4	74.9		
Fin = 3978 MHz	4			56.6	70.9		
Fin = 4778 MHz	4			50.5	73.2		
Fin = 5578 MHz	4			52.3	73.1		
At -8 dBFS output level		I	I	75.0	70.0		1
	4	-		75.0	76.2		
	4	-		72.3	76.2		
Fin = 1578 MHz	4			72.2	76.5		
Fin = 2230 MHz	4	SFDR		/4.6			
Fin = 2378 MHz	4	ABES		73.4	75.8		(1)(2)(3)(4)
Fin = 3178 MHz	4			66.6	75.9		
Fin = 3978 MHz	4			70.6	75.4		
Fin = 4778 MHz	4	-		61.8	74.1		
Fin = 5578 MHz	4			67.1	75.7		
At -12 dBFS output level	4	I		75.0	75.0		1
$FIII = 90 V \Pi Z$	4	-		75.0	75.0		
	4	-		74.0	75.0		
FIN = 1578 MHZ	4			74.3	74.6		
Fin = 2230 MHZ	4	SFDR		75			
Fin = 2378 MHz	4	dBES		/3.8	/4.4		(1)(2)(3)(4)
Fin = 3178 MHz	4			73.7	74.5		
Fin = 3978 MHz	4			73.6	75.0		
Fin = 4778 MHz	4			71.2	74.6		
Fin = 5578 MHz	4			73.1	74.7		

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Тур	Max	Note
IMD3 - InterModulation Distortion (th	nird order) – Dua	l tone - 4-cl	hannel mo	de – 1.6 GS	ps	
At -7 dBFS output level - Δ FIN = 10 MHz						
Fin = 100 MHz	4			61		
Fin = 700 MHz	4			62		
Fin = 1500 MHz	4			62		
Fin = 2300 MHz	4	IMD3		61		
Fin = 3100 MHz	4	INIDO		57		(1)
Fin = 3900 MHz	4	dBFS		52		
Fin = 4700 MHz	4			45		
Fin = 5500 MHz	4			38		
Fin = 5900 MHz	4			34		
At -9 dBFS output level - Δ FIN = 10 MHz		l			l	
Fin = 100 MHz	4			64		
Fin = 700 MHz	4			63		
Fin = 1500 MHz	4			64		
Fin = 2300 MHz	4	IMD3		64		
Fin = 3100 MHz	4			61		(1)
Fin = 3900 MHz	4	dBFS		58		
Fin = 4700 MHz	4			52		
Fin = 5500 MHz	4			46		
Fin = 5900 MHz	4			42		
At -14 dBFS output level - Δ FIN = 10 MH	Z					
Fin = 100 MHz	4			67		
Fin = 700 MHz	4			66		
Fin = 1500 MHz	4			67		
Fin = 2300 MHz	4	IMD3		70		
Fin = 3100 MHz	4			68		(1)
Fin = 3900 MHz	4	dBFS		69		
Fin = 4700 MHz	4			65		
Fin = 5500 MHz	4			61		
Fin = 5900 MHz	4			58		
At -18 dBFS output level - Δ FIN = 10 MH	Z					
Fin = 100 MHz	4			73		
Fin = 700 MHz	4			72		
Fin = 1500 MHz	4			72		
Fin = 2300 MHz	4	IMD3		75		
Fin = 3100 MHz	4			72		(1)
Fin = 3900 MHz	4	dBFS		77		
Fin = 4700 MHz	4			74		
Fin = 5500 MHz	4			70		
Fin = 5900 MHz	4			69		

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	T <u>y</u> Nominal	yp Without H2 – H3	Max AQ600/AQ605	Note
THD - Total harmonic dis	tortion - Single f	one - 4-cha	nnel mod	de – 1.6 GS	ps		
At -1 dBFS output level	_				-		
Fin = 98 MHz	4			-67.2	-68.1		
Fin = 778 MHz	4			-67.1	-68.9		
Fin = 1578 MHz	4			-60.9	-64.5		
Fin = 2230 MHz	1A/1D	ТНО		-62.2		-52/-56	
Fin = 2378 MHz	4	me		-60.4	-65.6		(1)
Fin = 3178 MHz	4	dBFS		-55.0	-65.6		
Fin = 3978 MHz	4			-48.8	-62.7		
Fin = 4778 MHz	4			-45.1	-67.7		
Fin = 5578 MHz	4			-47.0	-67.0		
At -3 dBFS output level							
Fin = 98 MHz	4			-63.7	-66.4		
Fin = 778 MHz	4			-66.3	-68.4		
Fin = 1578 MHz	4			-64.9	-66.0		
Fin = 2230 MHz	4	THD dBFS		-65.0			
Fin = 2378 MHz	4			-64.8	-66.7		(1)
Fin = 3178 MHz	4			-62.0	-68.7		
Fin = 3978 MHz	4			-55.6	-66.8		
Fin = 4778 MHz	4			-50.3	-68.3		
Fin = 5578 MHz	4			-51.1	-68.2		
At -8 dBFS output level							
Fin = 98 MHz	4			-68.4	-69.7		
Fin = 778 MHz	4			-67.2	-69.6		
Fin = 1578 MHz	4			-67.2	-69.7		
Fin = 2230 MHz	4	THD		-67.4			
Fin = 2378 MHz	4			-67.3	-69.2		(1)
Fin = 3178 MHz	4	dBFS		-64.3	-69.2		
Fin = 3978 MHz	4			-66.2	-69.2		
Fin = 4778 MHz	4			-60.5	-68.3		
Fin = 5578 MHz	4			-63.7	-69.3		
At -12 dBFS output level							
Fin = 98 MHz	4			-68.6	-69.5		
Fin = 778 MHz	4			-68.3	-69.4		
Fin = 1578 MHz	4			-68.1	-68.9		
Fin = 2230 MHz	4	THD		-68.2			
Fin = 2378 MHz	4			-67.5	-68.7		(1)
Fin = 3178 MHz	4	dBFS		-67.3	-68.8		
Fin = 3978 MHz	4			-67.6	-68.9		
Fin = 4778 MHz	4			-66.2	-68.9		
Fin = 5578 MHz	4			-67.3	-69.0		

			Тур				
Parameter	Test Level	Symbol	Min	Nominal	Averaged Simul	Max	Note
i uluilotoi	AQ600/AQ605	Unit	AQ600/AQ605	mode	Sampling	max	Note
SNR - Signal to poise rat	io - Single tone	- 1-chann	 el mode - 1.6.G	Sne	(*)		
At -1 dBFS output level	lio - Single tone	; - 4 -Chann		iopa			
Fin = 98 MHz	4			54.6	59.9		
Fin = 778 MHz	4			54.3	59.4		
Fin = 1578 MHz	4			53.5	58.4		
Fin = 2230 MHz	1A/1D	SNID	49/50	51.1			
Fin = 2378 MHz	4	SINIX		51.3	56.3		(1)
Fin = 3178 MHz	4	dBFS		50.3	54.9		
Fin = 3978 MHz	4			49.3	54.0		
Fin = 4778 MHz	4			48.4	52.9		
Fin = 5578 MHz	4			47.4	51.8		
At -3 dBFS output level	1	ı	1	I	1	. <u></u>	ı
Fin = 98 MHz	4			54.7	59.9		
Fin = 778 MHz	4			54.4	59.7		
Fin = 1578 MHz	4			53.9	58.9		
Fin = 2230 MHz	4	SNR		51.7			
Fin = 2378 MHz	4			51.9	57.0		(1)
Fin = 3178 MHz	4	abl2		51.1	55.9		
Fin = 3978 MHz	4			50.4	55.1		
Fin = 4778 MHz	4			49.6	54.2		
Fin = 5578 MHz	4			48.7	53.2		
At -8 dBFS output level	I .	I	1			I	I
Fin = 98 MHz	4			54.8	60.2		
Fin = 778 MHz	4			54.8	60.1		
Fin = 1578 MHz	4			54.6	59.8		
Fin = 2230 MHz	4	SNR		52.7			
Fin = 2378 MHz	4	ARES		52.9	58.0		(1)
Fin = 3178 MHz	4	UDF 3		52.6	57.7		
Fin = 3978 MHz	4			52.2	57.3		
Fin = 4778 MHz	4			51.8	56.8		
Fin = 5578 MHz	4			51.4	56.3		
At -12 dBFS output level	4			55 1	60.4		l
Fin = 778 MHz	4			55.0	60 3		
Fin – 1578 MHz	4			54.8	60.1		
Fin = 2230 MHz	4			53 1	00.1		
Fin = 2378 MHz	4	SNR		53.2	58.5		(1)
Fin = 3178 MHz	4	dBFS		53.1	58.3		(.)
Fin = 3978 MHz	4			52.9	58 1		
Fin = 4778 MHz	4			52.8	57.9		
Fin = 5578 MHz	4			52.6	57.7		
= 007 0 10112			1	02.0	0		

Quad 12-bit 1.6 GSps ADC

					Тур			
Parameter	Test Level AQ600/AQ605	Symbol Unit	Min AQ600/AQ605	Nominal mode	w/o H2, H3	Averaged Simul. Sampling(*)	Max	Note
SINAD - Signal to ne	oise and distor	tion ratio -	Single tone - 4	Channels	mode – 1	.6 GSps		
At -1 dBFS output lev	el							
Fin = 98 MHz	4			54.2	54.2	59.3		
Fin = 778 MHz	4			53.8	53.9	59.0		
Fin = 1578 MHz	4			52.5	52.8	56.5		
Fin = 2230 MHz	1A/1D		48/49.5	50.8				
Fin = 2378 MHz	4	UNAD		50.5	50.9	54.7		(1)
Fin = 3178 MHz	4	dBFS		48.7	49.8	52.5		
Fin = 3978 MHz	4			45.8	48.7	47.8		
Fin = 4778 MHz	4			43.2	47.8	44.0		
Fin = 5578 MHz	4			43.9	46.9			
At -3 dBFS output lev	el			L	L			
Fin = 98 MHz	4			54.0	54.2	58.4		
Fin = 778 MHz	4			54.0	54.1	58.9		
Fin = 1578 MHz	4			53.3	53.4	57.8		
Fin = 2230 MHz	4	SINAD		51.5				
Fin = 2378 MHz	4			51.5	51.5	56.3		(1)
Fin = 3178 MHz	4	dBFS		50.5	50.8	55.2		
Fin = 3978 MHz	4			49.0	49.9	52.4		
Fin = 4778 MHz	4			46.7	49.1	48.4		
Fin = 5578 MHz	4			46.5	48.3			
At -8 dBFS output lev	el	•						
Fin = 98 MHz	4			54.5	54.6	59.8		
Fin = 778 MHz	4	1		54.4	54.5	59.7		
Fin = 1578 MHz	4			54.2	54.3	59.4		
Fin = 2230 MHz	4	SINAD		52.5				
Fin = 2378 MHz	4	•••••		52.5	52.6	57.7		(1)
Fin = 3178 MHz	4	dBFS		52.1	52.3	57.1		
Fin = 3978 MHz	4			51.8	51.8	56.8		
Fin = 4778 MHz	4	1		51.0	51.4	55.3		
Fin = 5578 MHz	4	1		50.8	51.0			
At -12 dBFS output le	vel							
Fin = 98 MHz	4			54.7	54.7	60.1		
Fin = 778 MHz	4			54.7	54.7	60.1		
Fin = 1578 MHz	4			54.6	54.6	59.9		
Fin = 2230 MHz	4	SINAD		52.9				
Fin = 2378 MHz	4			53.0	53.0	58.3		(1)
Fin = 3178 MHz	4	dBFS		52.8	52.9	58.1		
Fin = 3978 MHz	4]		52.7	52.7	58.0		
Fin = 4778 MHz	4]		52.4	52.5	57.5		
Fin = 5578 MHz	4			52.2	52.2			

EV12AQ600 / EV12AQ605

			Тур					
Parameter	Test Level AQ600/AQ605	Symbol Unit	Min AQ600/AQ605	Nominal	w/o H2, H3	Averaged Simul. Sampling(*)	Max	Note
ENOB - Effective N	umber Of Bits -	Single ton	e - 4-channel m	ode – 1.6 (GSps			
At -1 dBFS output lev	el							
Fin = 98 MHz	4			8.7	8.7	9.6		l
Fin = 778 MHz	4			8.7	8.7	9.5		
Fin = 1578 MHz	4			8.4	8.5	9.1		
Fin = 2230 MHz	1A/1D		7.7/7.9	8.1				(4)
Fin = 2378 MHz	4	ENOB		8.1	8.2	8.8		(1)
Fin = 3178 MHz	4	Bit_FS		7.8	8.0	8.4		
Fin = 3978 MHz	4			7.3	7.8	7.6		
Fin = 4778 MHz	4			6.9	7.6	7.0		
Fin = 5578 MHz	4			7.0	7.5			
At -3 dBFS output lev	el					I		
Fin = 98 MHz	4			8.7	8.7	9.4		
Fin = 778 MHz	4			8.7	8.7	9.5		
Fin = 1578 MHz	4			8.6	8.6	9.3		
Fin = 2230 MHz	4	ENOR		8.3				(1)
Fin = 2378 MHz	4	ENOB		8.3	8.3	9.1		(1)
Fin = 3178 MHz	4	Bit_FS		8.1	8.1	8.9		
Fin = 3978 MHz	4			7.8	8.0	8.4		
Fin = 4778 MHz	4			7.5	7.9	7.7		
Fin = 5578 MHz	4			7.4	7.7			
At -8 dBFS output lev	el			L				
Fin = 98 MHz	4			8.8	8.8	9.6		
Fin = 778 MHz	4			8.7	8.8	9.6		
Fin = 1578 MHz	4			8.7	8.7	9.6		
Fin = 2230 MHz	4	ENOB		8.4				(1)
Fin = 2378 MHz	4	LINOD		8.4	8.4	9.3		(')
Fin = 3178 MHz	4	Bit_FS		8.4	8.4	9.2		
Fin = 3978 MHz	4	1		8.3	8.3	9.2		
Fin = 4778 MHz	4			8.2	8.2	8.9		
Fin = 5578 MHz	4	1		8.1	8.2	8.7		
At -12 dBFS output le	vel							
Fin = 98 MHz	4			8.8	8.8	9.7		
Fin = 778 MHz	4			8.8	8.8	9.7		
Fin = 1578 MHz	4			8.8	8.8	9.7		
Fin = 2230 MHz	4	ENOB		8.5				(1)
Fin = 2378 MHz	4			8.5	8.5	9.4		(.,
Fin = 3178 MHz	4	Bit_FS		8.5	8.5	9.4		
Fin = 3978 MHz	4			8.5	8.5	9.3		
Fin = 4778 MHz	4			8.4	8.4	9.3		
Fin = 5578 MHz	4			8.4	8.4	9.2		l

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Тур	Max	Note		
NSD - Noise Spectral Den	sity - 4-channel m	ode – 1.6	GSps					
At -1 dBFS output level								
1st Nyquist (NFPBW)		NSD		-143		(4)		
2nd Nyquist (EFPBW)		dBm/Hz		-140				
At -8 dBFS output level	· · ·				•			
1st Nyquist (NFPBW)		NSD		-144		(1)		
2nd Nyquist (EFPBW)		dBm/Hz		-142		(1)		
At loading factor = -12 dBFS 1st Nyquist (NFPBW)	- 640 MHz noise pat	tt ern width NPR dB	n - 5 MHz notc	h centered at Fs 44	/4			
At loading factor = -12 dBFS	- 640 MHz noise pat	ttern width	- 5 MHz notc	h centered at 3F	s/4			
2nd Nyquist (NFPBW)		NPR dB		43				
At loading factor = -12 dBFS	- 640 MHz noise par	ttern width	- 5 MHz notc	h centered at 5 F	Fs/4	(1)		
3rd Nyquist (EFPBW)		NPR dB		42				
At loading factor = -12 dBFS	- 640 MHz noise pat	ttern width	- 5 MHz notc	h centered at 7F	s/4			
4th Nyquist (EFPBW)		NPR dB		42				

(*) Averaged Simul. Sampling:

Simultaneous sampling is obtained by setting the 4 cores in phase (CLK_MODE_SEL = 0b11, see §6.3 Register map).

Average simultaneous sampling is obtained by averaging the samples of the 4 cores when they are in phase.

Notes:

- 1. Optimal bandwidth selection depends on signal characteristic. The bandwidth selection allows optimizing noise and linearity trade-off. For signals below 1.6 GHz, the bandwidth selection must be set to Nominal. For signals beyond this frequency, the bandwidth must be set to Extended. The extended bandwidth degrades noise floor up to 1 dB, compensated at high frequency by inputing signals with lower signal attenuation.
- Linearity of high frequencies is dominated by H3 and H2, stepping back 3 or 6 dB on input signals involving 2. signifiant improvement on SFDR figures. For narrow band operation (10 MHz or 50 MHz), a carefuly chosen frequency plan allows rejection of these folded harmonics up to H8 beyond the band of interest.
- SFDR without H3 harmonic is better than 60 dB_{FS} at -1 dB_{FS}. Removing H2 and H3 allows an SFDR performance higher than 68 dB_{FS} up to 5580 MHz. H3 dominates up to 5300 MHz, then H2 dominates above 3. 5300 MHz.
- 4. Adjustment of input common mode can also be used to optimize ADC linearity.

Quad	12-bit 1	1.6 GSps	ADC
------	----------	----------	-----

3.9 Dynamic Performance - 2-channel mode – 3.2 GSps

	Tost Loval	Symbol		Ту	р		
Parameter	AQ600/AQ605	Unit	Min	Nominal	ILG recal at Fin (**)	Мах	Note
SFDR - Spurious Free	e Dynamic Ran	ge - Single	tone - 2	2-channel mod	e – 3.2 GSps		
At -1 dBFS output level							
Fin = 98 MHz	4			71.8	71.8		
Fin = 778 MHz	4			68.3	68.3		
Fin = 1578 MHz	4			61.8	67.2		
Fin = 2230 MHz	4	SFDR		63.2	69.5		(1)(2)(3)(4)(5)(6)
Fin = 2378 MHz	4	dBES		61.5			
Fin = 3178 MHz	4			56.0	61.5		
Fin = 3978 MHz	4			47.9	48.6		
Fin = 4778 MHz	4			42.5	45.0		
Fin = 5578 MHz	4			38.0	64.3		
At -3 dBFS output level	·						
Fin = 98 MHz	4			68.1	68.3		
Fin = 778 MHz	4			66.2	73.3		
Fin = 1578 MHz	4			65.5	68.0		
Fin = 2230 MHz	4	SFDR		64.8			(1)(2)(3)(4)(5)(6)
Fin = 2378 MHz	4			64.0	74.4		
Fin = 3178 MHz	4	dBFS		59.2	68.3		
Fin = 3978 MHz	4			50.3	55.8		
Fin = 4778 MHz	4			44.3	50.1		
Fin = 5578 MHz	4			40.2	58.1		
At -8 dBFS output level							
Fin = 98 MHz	4			76.7	71.7		
Fin = 778 MHz	4			70.9	69.6		
Fin = 1578 MHz	4			69.8	70.2		
Fin = 2230 MHz	4	SFDR		71.3			(1)(2)(3)(4)(5)(6)
Fin = 2378 MHz	4			68.3	70.4		
Fin = 3178 MHz	4	dBFS		64.1	67.8		
Fin = 3978 MHz	4			55.7	70.1		
Fin = 4778 MHz	4			49.4	61.5		
Fin = 5578 MHz	4			45.4	65.4		
At -12 dBFS output leve	el						
Fin = 98 MHz	4			76.3	75.7		
Fin = 778 MHz	4			74.0	73.5		
Fin = 1578 MHz	4			72.2	76.4		
Fin = 2230 MHz	4	SFDR		73.9			
Fin = 2378 MHz	4	10 - 0		72.1	76.7		(1)(∠)(3)(4)(5)(6)
Fin = 3178 MHz	4	dBFS		70.6	69.7		
Fin = 3978 MHz	4			59.7	75.3		
Fin = 4778 MHz	4			53.7	71.0		
Fin = 5578 MHz	4			49.6	68.1		

Quad 12-bit 1.6 GSps ADC

Parameter	Test Level	Symbol Unit	Min	Nominal	Typ ILG re	ecal	Max	1	Note
	714000714000			Nominai	at Fin	(**)			
Paran	neter	Te AQe	est Level 600/AQ60	Symbol 5 Unit	Min	Т	ур	Max	Note
IMD3 - InterModulatio	on Distortion (th	ird order)	– Dual t	one -2 chan	nel mode	- 3.2	GSps		
At -7 dBFS output level	- Δ FIN = 10 MHz								
Fin = 100 MHz			4				62		
Fin = 700 MHz			4			(62		
Fin = 1500 MHz			4			(63		
Fin = 2300 MHz			4	IMD3		(61		
Fin = 3100 MHz			4			4	58		(1)
Fin = 3900 MHz			4	dBFS		4	53		
Fin = 4700 MHz			4			4	46		
Fin = 5500 MHz			4				38		
Fin = 5900 MHz			4				35		
At -9 dBFS output level	- Δ FIN = 10 MHz								
Fin = 100 MHz			4				64		
Fin = 700 MHz			4			(63		
Fin = 1500 MHz			4			(64		
Fin = 2300 MHz			4	IMD3		(64		
Fin = 3100 MHz			4	-		(62		(1)
Fin = 3900 MHz			4	dBFS			59		
Fin = 4700 MHz			4			4	53		
Fin = 5500 MHz			4			4	47		
Fin = 5900 MHz			4			4	43		
At -14 dBFS output leve	el - Δ FIN = 10 MH	Z							•
Fin = 100 MHz			4				68		
Fin = 700 MHz			4			(67		
Fin = 1500 MHz			4			(67		
Fin = 2300 MHz			4	IMD3		(69		
Fin = 3100 MHz			4			(68		(1)
Fin = 3900 MHz			4	dBFS		(69		
Fin = 4700 MHz			4			(65		
Fin = 5500 MHz			4			(62		
Fin = 5900 MHz			4			4	59		
At -18 dBFS output leve	el - Δ FIN = 10 MH	Z				•	•		
Fin = 100 MHz			4			•	74		
Fin = 700 MHz			4			-	72		
Fin = 1500 MHz			4				72		
Fin = 2300 MHz			4	IMD3		-	75		(4)
Fin = 3100 MHz			4	dBFS		•	73		(1)
Fin = 3900 MHz			4			•	76		
Fin = 4700 MHz			4			•	74		
Fin = 5500 MHz			4			-	70		

	Test Level Symi				Тур				Nete	
Parameter	AQ600/AQ605 Unit Min Nominal	ILG re at Fin	ecal (**)	Max	C	No	te			
Fin = 5900 MHz			4			7	70			

_	Test Level	Symbol		Ту	p		Note	
Parameter	AQ600/AQ605	Unit	Min	Nominal	Without H2 – H3	Мах	Note	
THD - Total harmonic	distortion - Sir	ngle tone -	2-chanı	nel mode – 3.2	GSps			
At -1 dBFS output level		0			•			
Fin = 98 MHz	4			-70.0	-70 7	l		
Fin = 778 MHz	4			-70.7	-72.3			
Fin = 1578 MHz	4			-62.3	-65.7			
Fin = 2230 MHz	4			-63 7				
Fin = 2378 MHz	4			-62.5	-66.9			
Fin = 3178 MHz	4	dBFS		-56.5	-67.5			
Fin = 3978 MHz	4			-51.0	-63.3			
Fin = 4778 MHz	4			-47.8	-70.1			
Fin = 5578 MHz	4			-48.0	-69.5			
At -3 dBFS output level								
Fin = 98 MHz	4			-64.8	-67.3			
Fin = 778 MHz	4			-68.3	-70.5			
Fin = 1578 MHz	4			-66.5	-66.9			
Fin = 2230 MHz	4			-66.3				
Fin = 2378 MHz	4			-67.0	-68.2			
Fin = 3178 MHz	4	dBFS		-63.8	-70.9			
Fin = 3978 MHz	4			-58.5	-68.3			
Fin = 4778 MHz	4			-52.9	-71.0			
Fin = 5578 MHz	4			-52.1	-71.2			
At -8 dBFS output level		II						
Fin = 98 MHz	4			-70.5	-71.9			
Fin = 778 MHz	4			-69.1	-71.8			
Fin = 1578 MHz	4			-68.3	-71.5			
Fin = 2230 MHz	4	тнр		-70.0				
Fin = 2378 MHz	4			-68.7	-71.1			
Fin = 3178 MHz	4	dBFS		-65.0	-70.7			
Fin = 3978 MHz	4			-68.9	-71.4			
Fin = 4778 MHz	4			-62.5	-70.4			
Fin = 5578 MHz	4			-64.1	-71.9			
At -12 dBFS output leve	el l							
Fin = 98 MHz	4			-70.7	-70.8			
Fin = 778 MHz	4			-70.0	-70.6			
Fin = 1578 MHz	4			-70.6	-70.0			
Fin = 2230 MHz	4	THD		-70.8				
Fin = 2378 MHz	4			-69.9	-69.9			
Fin = 3178 MHz	4	dBFS		-69.0	-69.8			
Fin = 3978 MHz	4			-69.6	-69.9			
Fin = 4778 MHz	4			-67.9	-69.6			
Fin = 5578 MHz	4			-69.7	-69.9			

EV12AQ600 / EV12AQ605

	Test Level	Symbol		Ту	р		
Parameter	AQ600/AQ605	Unit	Min	Nominal	ILG recal at Fin (**)	Max	Note
TILD - Total InterLea	ving Distortion	- Single to	ne - 2-cha	annel mode – 3	3.2 GSps		
At -1 dBFS output level	I						
Fin = 98 MHz	4			-68.7	-69.4		
Fin = 778 MHz	4			-63.5	-67.0		
Fin = 1578 MHz	4			-62.2	-70.3		
Fin = 2230 MHz	4			-65.4			
Fin = 2378 MHz	4			-63.5	-72.3		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		-58.4	-67.9		
Fin = 3978 MHz	4			-49.0	-65.3		
Fin = 4778 MHz	4			-43.3	-63.1		
Fin = 5578 MHz	4			-38.8	-63.5		
At -3 dBFS output level							
Fin = 98 MHz	4			-69.3	-73.1		
Fin = 778 MHz	4			-65.6	-72.8		
Fin = 1578 MHz	4			-64.1	-68.1		
Fin = 2230 MHz	4	TILD		-65.6			
Fin = 2378 MHz	4			-65.2	-72.9		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		-59.9	-69.8		
Fin = 3978 MHz	4			-51.0	-67.9		
Fin = 4778 MHz	4			-45.1	-68.7		
Fin = 5578 MHz	4	-		-40.9	-65.9		
At -8 dBFS output level	l						
Fin = 98 MHz	4			-75.5	-72.2		
Fin = 778 MHz	4			-61.3	-75.5		
Fin = 1578 MHz	4			-69.3	-78.9		
Fin = 2230 MHz	4	TILD		-70.5			
Fin = 2378 MHz	4			-70.3	-77.6		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		-66.5	-79.1		
Fin = 3978 MHz	4			-56.2	-77.4		
Fin = 4778 MHz	4			-50.1	-76.0		
Fin = 5578 MHz	4			-46.0	-65.1		
At -12 dBFS output leve	el						
Fin = 98 MHz	4			-78.2	-78.3		
Fin = 778 MHz	4			-73.5	-74.3		
Fin = 1578 MHz	4			-73.2	-80.1		
Fin = 2230 MHz	4	TILD		-76.1			
Fin = 2378 MHz	4	1050		-75.7	-78.7		(1) (4) (5)
Fin = 3178 MHz	4	area area		-70.4	-78.7		
Fin = 3978 MHz	4			-59.8	-80.3		
Fin = 4778 MHz	4			-54.0	-77.4		
Fin = 5578 MHz	4			-50.0	-68.1		

Quad 12-bit 1.6 GSps ADC

			Тур	/р			
Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Nominal	Averaged Simult. Sampling	Max	Note
SNR - Signal to noise	e ratio - Single t	one - 2-cl	nannel mo	de – 3.2 GSps			
At -1 dBFS output level							
Fin = 98 MHz	4			54.3	57.1		
Fin = 778 MHz	4			53.9	56.7		
Fin = 1578 MHz	4			53.1	55.9		
Fin = 2230 MHz	4	SNR		51.0			
Fin = 2378 MHz	4			51.0	53.7		
Fin = 3178 MHz	4	dBFS		50.0	52.7		
Fin = 3978 MHz	4			49.0	51.6		
Fin = 4778 MHz	4			48.0	50.6		
Fin = 5578 MHz	4			47.1	49.5		
At -3 dBFS output level							
Fin = 98 MHz	4			54.4	57.1		
Fin = 778 MHz	4			54.1	56.9		
Fin = 1578 MHz	4			53.6	56.3		
Fin = 2230 MHz	4	SNR		51.7			
Fin = 2378 MHz	4			51.7	54.3		
Fin = 3178 MHz	4	dBFS		50.9	53.5		
Fin = 3978 MHz	4			50.1	52.7		
Fin = 4778 MHz	4			49.3	51.9		
Fin = 5578 MHz	4			48.6	51.0		
At -8 dBFS output level							
Fin = 98 MHz	4			54.6	57.4		
Fin = 778 MHz	4			54.6	57.3		
Fin = 1578 MHz	4			54.3	57.1		
Fin = 2230 MHz	4	SNR		52.6			
Fin = 2378 MHz	4			52.6	55.4		
Fin = 3178 MHz	4	dBFS		52.3	55.1		
Fin = 3978 MHz	4			51.9	54.7		
Fin = 4778 MHz	4			51.6	54.2		
Fin = 5578 MHz	4			51.1	53.8		
At -12 dBFS output leve	el .						
Fin = 98 MHz	4			54.8	57.6		
Fin = 778 MHz	4			54.7	57.6		
Fin = 1578 MHz	4			54.6	57.4		
Fin = 2230 MHz	4	SNR		53.0			
Fin = 2378 MHz	4			53.0	55.8		
Fin = 3178 MHz	4	dBFS		52.9	55.7		
Fin = 3978 MHz	4			52.7	55.5		
Fin = 4778 MHz	4			52.5	55.3		
Fin = 5578 MHz	4			52.3	55.1		

EV12AQ600 / EV12AQ605

					Typical			
Parameter	Test Level	Symbol	Min		Averaged	ILG	Мах	Note
	AQ600/AQ605	Unit		Nominal	Simult.	recal at Fin (**)	max	
SINAD - Signal to noi	se and distortio	on ratio - Si	inale tor	le - 2-chanr	nel mode – 3.2	GSps		
At -1 dBFS output level						e e p e		
Fin = 98 MHz	4			53.9	56.9	54.1		
Fin = 778 MHz	4			53.2	56.5	53.6		
Fin = 1578 MHz	4			52.0	54.8	52.7		
Fin = 2230 MHz	4	SINIAD		50.5				
Fin = 2378 MHz	4	OINAD		50.4	52.8	50.9		(1)(4)(5)
Fin = 3178 MHz	4	dBFS		48.5	50.4	49.5		
Fin = 3978 MHz	4			44.8	46.0	45.6		
Fin = 4778 MHz	4			41.0	43.5	43.1		
Fin = 5578 MHz	4			37.8	44.5	46.8		
At -3 dBFS output level				•	•	•		
Fin = 98 MHz	4			53.8	56.4	54.0		
Fin = 778 MHz	4			53.4	56.5	54.0		
Fin = 1578 MHz	4			52.9	55.9	53.2		
Fin = 2230 MHz	4	SINAD		51.3				(1) (4)
Fin = 2378 MHz	4			51.2	54.0	51.6		(5)
Fin = 3178 MHz	4	dBFS		50.1	52.9	50.7		
Fin = 3978 MHz	4			47.1	50.2	48.9		
Fin = 4778 MHz	4			43.2	47.3	46.4		
Fin = 5578 MHz	4			39.9	47.3	47.8		
At -8 dBFS output level							_	
Fin = 98 MHz	4			54.4	57.3	54.4		
Fin = 778 MHz	4			54.3	57.0	54.3		
Fin = 1578 MHz	4			54.0	56.8	54.1		
Fin = 2230 MHz	4	SINAD		52.4				(1) (4)
Fin = 2378 MHz	4	1550		52.4	55.2	52.5		(5)
Fin = 3178 MHz	4	dBFS		51.8	54.6	52.1		
Fin = 3978 MHz	4			50.4	54.3	51.8		
Fin = 4778 MHz	4			47.5	53.0	51.0		
Fin = 5578 MHz	4			44.6	52.8	50.8		
At -12 dBFS output leve	el							
Fin = 98 MHz	4			54.6	57.4	54.7		
Fin = 778 MHz	4			54.5	57.4	54.6		
Fin = 1578 MHz	4			54.4	57.2	54.5		
Fin = 2230 MHz	4	SINAD		52.9				(1) (4)
Fin = 2378 MHz	4	15 - 5		52.9	55.6	53.0		(5)
Fin = 3178 MHz	4	dBFS		52.7	55.5	52.7		
Fin = 3978 MHz	4			51.9	55.3	52.6		
Fin = 4778 MHz	4			50.1	54.9	52.4		
Fin = 5578 MHz	4			47.9	54.8	52.2		

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Nominal	Averaged Simult. Sampling(*)	ILG recal at Fin(**)	Мах	Note
ENOB - Effective Nur	nber Of Bits - S	ingle tone	- 2-chanı	nel mode –	3.2 GSps			
At -1 dBFS output level						_		
Fin = 98 MHz	4			8.7	9.2	8.7		
Fin = 778 MHz	4			8.6	9.1	8.6		
Fin = 1578 MHz	4			8.4	8.8	8.5		
Fin = 2230 MHz	4	ENOB		8.1				
Fin = 2378 MHz	4			8.1	8.5	8.2		(1) (4)
Fin = 3178 MHz	4	Bit_FS		7.7	8.1	7.9		(0)
Fin = 3978 MHz	4			7.1	7.3	7.3		
Fin = 4778 MHz	4			6.5	6.9	6.9		
Fin = 5578 MHz	4			6.0	7.1	7.5		
At -3 dBFS output level	·				-			
Fin = 98 MHz	4			8.7	9.1	8.7		
Fin = 778 MHz	4			8.6	9.1	8.7		
Fin = 1578 MHz	4			8.5	9.0	8.5		
Fin = 2230 MHz	4	ENOB		8.2				
Fin = 2378 MHz	4			8.2	8.7	8.3		(1) (4)
Fin = 3178 MHz	4	Bit_FS		8.0	8.5	8.1		(0)
Fin = 3978 MHz	4			7.5	8.0	7.8		
Fin = 4778 MHz	4			6.9	7.6	7.4		
Fin = 5578 MHz	4			6.3	7.6	7.7		
At -8 dBFS output level			1	1		1		
Fin = 98 MHz	4			8.7	9.2	8.7		
Fin = 778 MHz	4			8.7	9.2	8.7		
Fin = 1578 MHz	4			8.7	9.1	8.7		
Fin = 2230 MHz	4	ENOB		8.4				
Fin = 2378 MHz	4	LINOD		8.4	8.9	8.4		(1) (4)
Fin = 3178 MHz	4	Bit_FS		8.3	8.8	8.4		(5)
Fin = 3978 MHz	4			8.1	8.7	8.3		
Fin = 4778 MHz	4			7.6	8.5	8.2		
Fin = 5578 MHz	4			7.1	8.5	8.2		
At -12 dBFS output leve	el		1		1			
Fin = 98 MHz	4			8.8	9.2	8.8		
Fin = 778 MHz	4			8.8	9.2	8.8		
Fin = 1578 MHz	4			8.8	9.2	8.8		
Fin = 2230 MHz	4			8.5				
Fin = 2378 MHz	4	ENUD		8.5	9.0	8.5		(1) (4)
Fin = 3178 MHz	4	Bit_FS		8.5	8.9	8.5		(5)
Fin = 3978 MHz	4			8.3	8.9	8.5		
Fin = 4778 MHz	4			8.0	8.8	8.4		
Fin = 5578 MHz	4			7.6	8.8	8.4		

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Тур	Мах	Note
NSD - Noise Spectral Densit	y - 2-channel me	ode – 3.2 G	Sps			
At -1 dBFS output level						
1st Nyquist (NFPBW)		NSD		-146		(4)
2nd Nyquist (EFPBW)		dBm/Hz		-143		(1)
At -8 dBFS output level						
1st Nyquist (NFPBW)		NSD		-147		(1)
2nd Nyquist (EFPBW)		dBm/Hz		-145		(1)
NPR - Noise Power Ratio - 2	-channel mode -	- 3.2 GSps				
At loading factor = -12 dBFS - 1	280 MHz noise pa	ttern width ·	· 5 MHz notcl	h centered at Fs	/4	
1st Nyquist(NFPBW)		NPR dB		43		
At loading factor = -12 dBFS - 1	280 MHz noise pa	ttern width ·	- 5 MHz notcl	h centered at 3F	s/4	(1)
2nd Nyquist (EFPBW)		NPR dB		39		

(*) Averaged Simul.Sampling :

Simultaneous sampling is obtained by setting the 4 cores in phase (CLK_MODE_SEL = 0b11, see §6.3 Register map). Average simultaneous sampling is obtained by averaging the samples of the 4 cores when they are in phase.

(**) ILG recal at Fin:

Performance after recalibration at measurement frequency

Notes:

- Optimal bandwidth selection depends on signal characteristics. The bandwidth selection allows optimizing 1. noise and linearity trade-off. For signals below 1.5 GHz, the bandwidth selection must be set to Nominal. For signals beyond this frequency, the bandwidth select must be set to Extended. The extended bandwidth degrades noise floor up to 1dB, compensated at high frequency by inputing signals with lower signal attenuation.
- 2. Linearity of high frequencies is dominated by H3 and H2, stepping back 3 or 6 dB on input signals involving signifiant improvement on SFDR figures. For narrow band operation (10 MHz or 50 MHz), a carefuly chosen frequency plan allows rejection of these folded harmonics up to H8 beyond the band of interest.
- SFDR without H3 harmonic is better than 60 dBFS at -1 dBFS. Removing H2 and H3 allows an SFDR 3 performance higher than 68 dBFS up to 5580 MHz. H3 dominates up to 5300 MHz, then H2 dominates above 5300 MHz.
- 4. For input frequencies < 800 MHz, the SFDR is given with the interleaving calibration set CALSET2. For input frequencies > 800 MHz, the SFDR is given with CALSET0.
- Interleaving performance (1-channel and 2-channel mode) are given for IN0 only. For IN3, interleaving 5 calibration must be done to achieve those performance.
- 6. Adjustment of input common mode can also be used to optimize ADC linearity.

3.10 Dynamic Performance - 1-channel mode - 6.4 GSps

	Test Level Symb	Symbol	Min	Ty	ур		
Parameter	AQ600/AQ605	Unit	AQ600/AQ605	Nominal	ILG recal at Fin(**)	Max	Note
SFDR - Spurious Free	e Dynamic Range	e - Single tor	ne - 1-channel mo	ode – 6.4 GSp	s		
At -1 dBFS output lev	rel I ⊿	I	I	66.2	70.4	1	
Fin - 778 MHz	4	SFDR		63.1	73.4		
Fin = 1578 MHz	4			56.2	64.5		
Fin = 2230 MHz	14/1D	dBFS	53/57(*)	64.7	04.0		
Fin = 2230 MHz			56/60	04.7			
Fin = 2230 MHz			55/57				(1)(2)(3)(4)(5)(6)
Fin - 2378 MHz			33/37	62.4	64.0		(1)(2)(3)(4)(3)(0)
Fin - 3178 MHz	4			52.4	55.3		
Fin = 3078 MHz		SFDR		16 3	/8.3		
Fin = 4778 MHz	4	dBFS		40.5	40.5		
Fin = 5578 MHz	4			30.8	44.7		
At -3 dBFS output lev	rel 4			59.0	40.7		
Fin = 98 MHz	4			66.7	67.4		
Fin = 778 MHz	4			64.5	72.2		
Fin = 1578 MHz	4			58.8	68.9		
Fin = 2230 MHz	4	SEDR		67.2			
Fin = 2378 MHz	4			63.8	69.0		(1)(2)(3)(4)(5)(6)
Fin = 3178 MHz	4	dBFS		54.5	63.5		
Fin = 3978 MHz	4			48.1	55.5		
Fin = 4778 MHz	4			44.4	49.8		
Fin = 5578 MHz	4			41.8	51.7		
At -8 dBFS output lev	rel		1	l		1	l
Fin = 98 MHz	4			67.8	73.1		
Fin = 778 MHz	4			67.3	70.4		
Fin = 1578 MHz	4			63.6	70.9		
Fin = 2230 MHz	4	SFDR		69.1			
Fin = 2378 MHz	4			68.1	72.9		(1)(2)(3)(4)(5)(6)
Fin = 3178 MHz	4	0BFS		59.3	66.0		
Fin = 3978 MHz	4			53.2	69.7		
Fin = 4778 MHz	4			49.4	61.4		
Fin = 5578 MHz	4			46.8	62.9		
At -12 dBFS output le	evel ∣ ⊿	I	I	67.0	74.0	l.	I
$FIII = 90 V \Pi Z$	4			69.0	74.0		
FIII = 770 IVITIZ	4			00.0	75.0		
	4			00.1	/5.2		
FIN = 2230 IMHZ	4	SFDR		67.5 CO.4	74.0		(4)(2)(2)(4)(5)(0)
$\Gamma III = 2378 \text{ IVIHZ}$	4	dBFS		09.4	74.0		(1)(2)(3)(4)(3)(6)
FIN = 31/8 WHZ	4			63./	/5.0		
FIN = 39/8 WHZ	4			57.4	/4.1		
FIN = 4778 MHZ	4			53.5	/0.0		
FIN = 5578 MHz	4			50.9	67.3		

EV12AQ600 / EV12AQ605

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Тур	Max	Note
IMD3 - InterModulation Distortion (th	ird order) – Dua	l tone – 1	channel mo	de – 6.4 GS	Sps	
At -7 dBFS output level - Δ FIN = 10 MHz						
Fin = 100 MHz	4			62		
Fin = 700 MHz	4			63		
Fin = 1500 MHz	4			63		
Fin = 2300 MHz	4	IMD3		61		
Fin = 3100 MHz	4	IIIIDO		58		(1)
Fin = 3900 MHz	4	dBFS		54		
Fin = 4700 MHz	4			46		
Fin = 5500 MHz	4			39		
Fin = 5900 MHz	4			36		
At -9 dBFS output level - Δ FIN = 10 MHz						
Fin = 100 MHz	4			64		
Fin = 700 MHz	4			64		
Fin = 1500 MHz	4			65		
Fin = 2300 MHz	4	IMD3		64		
Fin = 3100 MHz	4	IIIIDO		63		(1)
Fin = 3900 MHz	4	dBFS		59		
Fin = 4700 MHz	4			53		
Fin = 5500 MHz	4			47		
Fin = 5900 MHz	4			44		
At -14 dBFS output level - Δ FIN = 10 MH	z					
Fin = 100 MHz	4			68		
Fin = 700 MHz	4			67		
Fin = 1500 MHz	4			67		
Fin = 2300 MHz	4	IMD3		69		
Fin = 3100 MHz	4			68		(1)
Fin = 3900 MHz	4	dBFS		69		
Fin = 4700 MHz	4			66		
Fin = 5500 MHz	4			62		
Fin = 5900 MHz	4			61		
At -18 dBFS output level - Δ FIN = 10 MH	Z					
Fin = 100 MHz	4			74		
Fin = 700 MHz	4			73		
Fin = 1500 MHz	4			72		
Fin = 2300 MHz	4	ІМПЗ		75		
Fin = 3100 MHz	4	IIIIDO		73		(1)
Fin = 3900 MHz	4	dBFS		76		
Fin = 4700 MHz	4			74		
Fin = 5500 MHz	4			71		
Fin = 5900 MHz	4			70		

Quad 12-bit 1.6 GSps ADC

Poromotor	Test Level	Symbol	Min	Тур		Мах	Noto
Farameter	AQ600/AQ605	Unit	IVIIII	Nominal mode	Without H2 – H3	AQ600/AQ605	Note
THD - Total harmoni	ic distortion - S	ingle tone	e - 1-cha	nnel mode – 6.4	GSps		
At -1 dBFS output leve	el						
Fin = 98 MHz	4			-70.2	-71.1		
Fin = 778 MHz	4			-70.2	-72.9		
Fin = 1578 MHz	4			-61.7	-65.8		
Fin = 2230 MHz	1A/1D	THD		-62.9		-54/-56	
Fin = 2378 MHz	4			-61.3	-67.4		(1) (4)
Fin = 3178 MHz	4	dBFS		-55.5	-67.5		
Fin = 3978 MHz	4			-49.3	-63.6		
Fin = 4778 MHz	4			-45.1	-71.3		
Fin = 5578 MHz	4			-45.8	-70.8		
At -3 dBFS output leve	el .					·	
Fin = 98 MHz	4			-64.7	-67.8		
Fin = 778 MHz	4			-68.7	-70.9		
Fin = 1578 MHz	4			-66.5	-67.3		
Fin = 2230 MHz	4	THD		-66.6			
Fin = 2378 MHz	4			-66.9	-68.5		(1) (4)
Fin = 3178 MHz	4	dBFS		-63.3	-71.8		
Fin = 3978 MHz	4			-56.4	-68.6		
Fin = 4778 MHz	4			-50.4	-71.2		
Fin = 5578 MHz	4			-50.1	-71.1		
At -8 dBFS output leve	el						
Fin = 98 MHz	4			-71.0	-73.7		
Fin = 778 MHz	4			-69.0	-73.4		
Fin = 1578 MHz	4			-68.8	-73.2		
Fin = 2230 MHz	4	THD		-70.4			
Fin = 2378 MHz	4			-69.5	-72.8		(1) (4)
Fin = 3178 MHz	4	dBFS		-52.1	-72.4		
Fin = 3978 MHz	4			-68.3	-72.8		
Fin = 4778 MHz	4			-61.1	-71.2		
Fin = 5578 MHz	4			-62.9	-73.5		
At -12 dBFS output lev	/el					·	
Fin = 98 MHz	4			-72.2	-73.2		
Fin = 778 MHz	4			-71.4	-72.8		
Fin = 1578 MHz	4			-71.2	-71.8		
Fin = 2230 MHz	4	THD		-73.0			
Fin = 2378 MHz	4			-70.7	-71.7		(1) (4)
Fin = 3178 MHz	4	dBFS		-69.9	-71.7		
Fin = 3978 MHz	4			-70.7	-71.9		
Fin = 4778 MHz	4			-68.2	-71.8		
Fin = 5578 MHz	4	1		-70.4	-72.1		
Quad 12-bit 1.6 GSps ADC

EV12AQ600 / EV12AQ605

				Тур			
Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Nominal	ILG recal at Fin (**)	Max AQ600/AQ605	Note
TILD - Total InterLeav	ving Distortion	- Single tor	ne - 1-cha	annel mode – 6	.4 GSps		
At -1 dBFS output level							
Fin = 98 MHz	4			-62.7	-67.1		
Fin = 778 MHz	4			-59.6	-69.5		
Fin = 1578 MHz	4			-57.1	-68.3		
Fin = 2230 MHz	1A/1D	TILD		-61.8		-51/-60 ^(*)	
Fin = 2378 MHz	4			-60.5	-64.4		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		-51.8	-66.9		
Fin = 3978 MHz	4			-46.0	-65.3		
Fin = 4778 MHz	4			-41.8	-61.7		
Fin = 5578 MHz	4			-38.3	-59.5		
At -3 dBFS output level							
Fin = 98 MHz	4			-64.3	-68.0		
Fin = 778 MHz	4			-62.5	-70.0		
Fin = 1578 MHz	4			-58.8	-69.8		
Fin = 2230 MHz	4	TILD		-64.1			
Fin = 2378 MHz	4	10-00		-61.7	-66.9		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		-54.0	-69.0		
Fin = 3978 MHz	4			-48.0	-67.6		
Fin = 4778 MHz	4			-43.7	-63.2		
Fin = 5578 MHz	4			-40.5	-58.5		
At -8 dBFS output level							
Fin = 98 MHz	4			-67.1	-70.8		
Fin = 778 MHz	4			-65.9	-69.9		
Fin = 1578 MHz	4			-61.6	-70.8		
Fin = 2230 MHz	4	TILD		-66.1			
Fin = 2378 MHz	4	1050		-65.4	-70.7		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		-60.6	-72.9		
Fin = 3978 MHz	4			-53.0	-70.0		
Fin = 4778 MHz	4			-48.8	-66.3		
Fin = 5578 MHz	4			-45.6	-60.7		
At -12 dBFS output leve		1	1	1	1	1	1
Fin = 98 MHz	4			-66.9	-72.8		
Fin = 778 MHz	4			-66.8	-73.3		
Fin = 1578 MHz	4			-63.5	-73.3		
Fin = 2230 MHz	4	TILD		-66.2			
Fin = 2378 MHz	4			-67.3	-71.0		(1) (4) (5)
Fin = 3178 MHz	4	UBF5		-62.2	-74.1		
Fin = 3978 MHz	4			-56.8	-70.8		
Fin = 4778 MHz	4			-52.9	-67.0		
Fin = 5578 MHz	4			-49.6	-63.4		

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

EV12AQ600 / EV12AQ605

Quad 12-bit 1.6 GSps ADC

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min AQ600/AQ605	Тур	Мах	Note		
SNR - Signal to noise ratio - Single tone - 1-channel mode – 6.4 GSps								
At -1 dBFS output level	I	I	I	I	1	I		
Fin = 98 MHz	4			54.2				
Fin = 778 MHz	4	-		53.9				
Fin = 1578 MHz	4			53.1				
Fin = 2230 MHz	1A/1D	SNR	49/50	51.0				
Fin = 2378 MHz	4			51.0		(1) (4) (5)		
Fin = 3178 MHz	4	dBFS		50.0				
Fin = 3978 MHz	4			49.0				
Fin = 4778 MHz	4			48.0				
Fin = 5578 MHz	4			47.1				
At -3 dBFS output level	1	I	l	1	1	1		
Fin = 98 MHz	4	-		54.3				
Fin = 778 MHz	4	-		54.1				
Fin = 1578 MHz	4			53.6				
Fin = 2230 MHz	4	SNR		51.7				
Fin = 2378 MHz	4			51.7		(1) (4) (5)		
Fin = 3178 MHz	4	dBFS		50.9				
Fin = 3978 MHz	4			50.1				
Fin = 4778 MHz	4			49.3				
Fin = 5578 MHz	4			48.5				
At -8 dBFS output level	1	1	1	1	1	1		
Fin = 98 MHz	4	-		54.5				
Fin = 778 MHz	4			54.5				
Fin = 1578 MHz	4			54.3				
Fin = 2230 MHz	4	SNR		52.6				
Fin = 2378 MHz	4			52.6		(1) (4) (5)		
Fin = 3178 MHz	4	dBFS		52.9				
Fin = 3978 MHz	4			51.9				
Fin = 4778 MHz	4			51.5				
Fin = 5578 MHz	4			51.1				
At -12 dBFS output leve					1	1		
Fin = 98 MHz	4			54.7				
Fin = 778 MHz	4	-		54.7				
Fin = 1578 MHz	4			54.6				
Fin = 2230 MHz	4	SNR		53.0				
Fin = 2378 MHz	4			53.0		(1) (4) (5)		
Fin = 3178 MHz	4	dBFS		52.9				
Fin = 3978 MHz	4			52.7				
Fin = 4778 MHz	4			52.5				
Fin = 5578 MHz	4			52.3				

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 38 DS 60S 218366 rev G – May 20

Quad 12-bit 1.6 GSps ADC

EV12AQ600 / EV12AQ605

	Tost Lovel	Symbol	Min	1	Гур		
Parameter	AQ600/AQ605	Unit	AQ600/AQ605	Nominal	ILG recal	Max	Note
SINAD - Signal to noi	se and distortio	on ratio - S	ingle tone - 1-c	hannel mo	de – 6.4 GSr	 \s	
At -1 dBFS output level							
Fin = 98 MHz	4		ĺ	53 5	54 0	l	
Fin = 778 MHz	4			52.8	53.8		
Fin = 1578 MHz	4			51.2	52.5		
Fin = 2230 MHz	1A/1D		48/49.5(*)	50.4			
Fin = 2378 MHz	4	SINAD		50.2	50.6		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		47.1	48.7		
Fin = 3978 MHz	4			43.1	45.1		
Fin = 4778 MHz	4			39.5	42.9		
Fin = 5578 MHz	4			37.1	42.3		
At -3 dBFS output level							
Fin = 98 MHz	4			53.5	53.9		
Fin = 778 MHz	4			53.4	53.9		
Fin = 1578 MHz	4			52.2	53.4		
Fin = 2230 MHz	4	SINAD		51.3			
Fin = 2378 MHz	4			51.1	51.5		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		49.0	50.6		
Fin = 3978 MHz	4			45.5	48.6		
Fin = 4778 MHz	4			42.0	46.2		
Fin = 5578 MHz	4			39.5	45.4		
At -8 dBFS output level	·						
Fin = 98 MHz	4			54.2	54.5		
Fin = 778 MHz	4			54.0	54.3		
Fin = 1578 MHz	4			53.4	54.2		
Fin = 2230 MHz	4	SINAD		52.3			
Fin = 2378 MHz	4	••••••		52.3	52.5		(1) (4) (5)
Fin = 3178 MHz	4	dBFS		51.2	52.1		
Fin = 3978 MHz	4			49.4	51.8		
Fin = 4778 MHz	4			46.8	50.9		
Fin = 5578 MHz	4			44.4	50.4		
At -12 dBFS output leve	el .						_
Fin = 98 MHz	4			54.4	54.7		
Fin = 778 MHz	4			54.3	54.6		
Fin = 1578 MHz	4			54.0	54.6		
Fin = 2230 MHz	4	SINAD		52.7			
Fin = 2378 MHz	4	15 5 6		52.8	53.0		(1) (4) (5)
Fin = 3178 MHz	4	aBFS		52.3	52.9		
Fin = 3978 MHz	4			51.2	52.7		
Fin = 4778 MHz	4			49.6	52.3		
Fin = 5578 MHz	4			47.7	51.9		

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G – May 2023

EV12AQ600 / EV12AQ605

Quad 12-bit 1.6 GSps ADC

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min AQ600/AQ605	ا Nominal	Гур ILG recal at Fin	Max	Note
ENOB - Effective Nu	mber Of Bits - S	ingle tone	- 1-channel mo	de – 6.4 G	Sps		
At -1 dBFS output leve	əl						
Fin = 98 MHz	4			8.6	8.7		
Fin = 778 MHz	4			8.5	8.6		
Fin = 1578 MHz	4			8.2	8.4		
Fin = 2230 MHz	1A/1D		7.7/7.9(*)	8.1			
Fin = 2378 MHz	4	ENOB		8.0	8.1		(1) (4) (5)
Fin = 3178 MHz	4			7.5	7.8		
Fin = 3978 MHz	4			6.9	7.2		
Fin = 4778 MHz	4			6.3	6.8		
Fin = 5578 MHz	4			5.9	6.7		
At -3 dBFS output leve	el						
Fin = 98 MHz	4			8.6	8.7		
Fin = 778 MHz	4			8.6	8.7		
Fin = 1578 MHz	4			8.4	8.6		
Fin = 2230 MHz	4			8.2			
Fin = 2378 MHz	4	Bit ES		8.2	8.3		(1) (4) (5)
Fin = 3178 MHz	4			7.8	8.1		
Fin = 3978 MHz	4			7.3	7.8		
Fin = 4778 MHz	4			6.7	7.4		
Fin = 5578 MHz	4			6.3	7.2		
At -8 dBFS output leve	el						
Fin = 98 MHz	4			8.7	8.8		
Fin = 778 MHz	4			8.7	8.7		
Fin = 1578 MHz	4			8.6	8.7		
Fin = 2230 MHz	4			8.4			
Fin = 2378 MHz	4	Bit ES		8.4	8.4		(1) (4) (5)
Fin = 3178 MHz	4	DIL_10		8.2	8.4		
Fin = 3978 MHz	4			7.9	8.3		
Fin = 4778 MHz	4			7.5	8.2		
Fin = 5578 MHz	4			7.1	8.1		
At -12 dBFS output lev	/el						
Fin = 98 MHz	4			8.7	8.8		
Fin = 778 MHz	4			8.7	8.8		
Fin = 1578 MHz	4			8.7	8.8		
Fin = 2230 MHz	4	ENOD		8.5			
Fin = 2378 MHz	4	Bit FS		8.5	8.5		(1) (4) (5)
Fin = 3178 MHz	4			8.4	8.5		
Fin = 3978 MHz	4			8.2	8.5		
Fin = 4778 MHz	4			7.9	8.4		
Fin = 5578 MHz	4			7.6	8.3		

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 40 DS 60S 218366 rev G – May 20

Quad 12-bit 1.6 GSps ADC

EV12AQ600 / EV12AQ605

Parameter	Test Level AQ600/AQ605	Symbol Unit	Min	Тур	Мах	Note
NSD - Noise Spectral Density	/ - 1-channel m	ode – 6.4 G	Sps			
At -1 dBFS output level						
1st Nyquist (NFPBW)	4	NSD dBm/Hz		-148		
At -8 dBFS output level						
1st Nyquist (NFPBW)	4	NSD		-149		
2nd Nyquist (EFPBW)	4	dBm/Hz		-147		
NPR - Noise Power Ratio - 1- At loading factor = -12 dBFS – 2	channel mode - 560 MHz noise pa	– 6.4 GSps attern width	- 5 MHz notc	h centered at F	s/4	
1st Nyquist (NFPBW)	4	NPR dB		44		

th customer recalibration for AQ605

(**) ILG recal at Fin: Performance after recalibration at measurement frequency

Notes:

- Optimal bandwidth selection depends on signal characteristics. The bandwidth selection allows optimizing 1. noise and linearity trade-off. For signals below 1.6 GHz, the bandwidth selection must be set to Nominal. For signals beyond this frequency, the bandwidth select must be set to Extended. The extended bandwidth degrades noise floor up to 1dB, compensated at high frequency by inputing signals with lower signal attenuation.
- Linearity of high frequencies is dominated by H3 and H2, stepping back 3 or 6 dB on input signals involving signifiant improvement on SFDR figures. For narrow band operation (10 MHz or 50 MHz), a carefully chosen frequency plan allows rejection of these folded harmonics up to H8 beyond the band of interest. 2.
- 3. SFDR without H3 harmonic is better than 60 dB_{FS} at -1 dB_{FS}. Removing H2 and H3 allows an SFDR performance higher than 68 dB_{FS} up to 5580 MHz. H3 dominates up to 5300 MHz, then H2 dominates above 5300 MHz.
- 4. For input frequencies < 800 MHz, the SFDR is given for with interleaving calibration set CALSET2. For input frequencies > 800 MHz, the SFDR is given with CALSET0. See 8.3.
- Interleaving performance (1-channel and 2-channel mode) are given for IN0 only. For IN3, interleaving 5. calibration must be done to achieve those performances.
- 6. Adjustment of input common mode can also be used to optimize ADC linearity.

3.11 Transient, Switching and Timing Characteristics

Unless otherwise specified:

- Typical values are given for typical supplies VCCA = 3.3 V, VCCD = 1.2 V, VCCO = 2.5 V at room temperature with Fclk = 6.4 GHz and with nominal mode of the SPI (SDA, CLKOUT and SYNCO disabled).
- Minimum and Maximum values are given over temperature and power supplies.
- ADC output level -1 dBFS.
- Clock input differentially driven @ +1 dBm at ADC input.
- Non interleaved ADC.
- Reduced swing.

_

Transient characteristics

Parameter	Test level	Symbol	Min	Тур	Max	Unit	Note
TRANSIENT PERFORMANCE							
Conversion Error Rate at 1.6 GSps Less than 128 LSB (TBC)	4	CER		10E ⁻¹⁵		Error/ sample	(1)
Serial link Bit Error Rate at 12.8 Gbps	4	BER		10E ⁻¹⁶		Error/ sample	
Overvoltage Recovery Time	5	ORT		625		ps	

Notes:

1. Measured with 95% confidence level and a threshold of 100 LSB (<2.5% full scale). Fs = 1.6 GSps, T_J = 110 °C. For Tj=125 °C, CER value is 10E⁻¹²

- Switching characteristics							
Parameters	Test level	Symbol	Min	Тур	Max	Unit	Note
SWITCHING PERFORMANCE AND CHARACTERISTICS (Any Output Mode)							
External Clock low frequency range		_	800		2000	MHz	
External Clock high frequency range	4	FCLK	4500		6400	MHz	
Sampling Clock low frequency range per core	Л	Fs	200		500	MSps	
Sampling Clock high frequency range per core	4	13	1125		1600	MSps	
Sampling Clock to CLKOUT delay	4	Tclkout		170		ps	
Max crosstalk from CLKOUT on clock input signal@ 12.8 Gbps	4	XTALK_CKO2CK			-60	dB	
Aperture Delay (SDA disabled)	5	TA		TBD		ps	
Sampling Delay Tuning Range (SDA enabled)	4		0.03		120	ps	
ADC Aperture uncertainty (SDA disabled)	4	JITTER _{SDA_OFF}		125		fs _{rms}	(1)
ADC Aperture uncertainty (SDA enabled min)	4	JITTER _{SDA_MIN}		220		fs _{rms}	
ADC Aperture uncertainty (SDA enabled max)	4	JITTER _{SDA_MAX}		270		fs _{rms}	
CLKOUT jitter	5			70		fs _{rms}	
Digital reset duration	4		10			μs	
ADC settling time after power up		TS		NA		μs	(5)
Minimum SYNC pulse width	4æ	TSYNC		2		External Clock cycles	
SWITCHING PERFORMANCE AND C	HARACTE	RISTIC (SSO, SY	NCO)				
Output rise time (20%-80%)	4	TR		120		ps	(2)

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Quad 12-bit 1.6 GSps ADC

Output fall time (20%-80%)		TF		120		ps	(2)
Parameters	Test level	Symbol	Min	Тур	Max	Unit	Note
CLK to SYNCO pipeline delay sync_edge rising	4	TPD _{SYNCO}		1		External Clock cycles	
CLK to SYNCO pipeline delay sync_edge falling	4	TPD _{SYNCO}		0.5		External Clock cycles	
CLK to SYNCO delay	4	TDSYNCO		350		ps	
CLK to SSO delay	4	TD _{SSO}		1.2		ns	
SWITCHING PERFORMANCE AND C Output Data delay (pipeline + delay)	HARACTE	RISTIC (Serial out	tput) 156		172	External Clock cycles	
		TOD		2		ns	
Output rise time for DATA (20%-80%)	4	TR		31		ps	(2)
Output fall time for DATA (20%-80%)	т	TF		31		ps	(2)
Total jitter (BER=10 ⁻¹⁵) @ 12.8 Gbps	4	2XT1		25		ps	(2),(4)
First time to get YT2 amplitude voltage @ 12.8 Gbps	4	XT2		25		ps	(2),(4)
Maximum amplitude voltage @ 12.8 Gbps	4			400		mV	(2),(4)
Skew between serial output signal P and N	4	Tskew			3.5	ps	(2)
Conversion Core latency	5			5		External Clock cycles	(3)
Total conversion latency	4		126		142	External Clock cycles	(3)
Crosstalk between xSL1 and xSL0@ 12.8 Gbps (x= A, B, C or D)		XTALK_SL2SL			-60	dB	(2)
Max crosstalk between output serial link and analog input signal @ 12.8 Gbps	4	XTALK_SL2IN			-80	dB	(2)

Notes:

1. See Definition of Terms.

2. 100 Ω load + PCB line 7 cm + cable 60 cm.

- 3. The latency of the conversion core is fixed. The total latency of the ADC (including the serial interface) can take any system external clock cycle between 126 and 142. ESIstream protocol wipes out the variable latency on the receiver's end due to its intrinsic synchronization procedure.
- 4. See Figure 3 for illustration of these values on the eye diagram of the serial links.
- 5. Serial link output frame initialization masks the analog input setting time.

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Figure 3 Serial link eye diagram

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 44 DS 60S 218366 rev G - May 2023

- SPI Tir	ning chara	cteristics					
Parameter	Test Level	Symbol		Value	Unit	Note	
			Min	Тур	Max	0.110	
RSTN pulse length	4	TRSTN	10			μs	
SCLK frequency	4	Fsclk			10	MHz	
CSN to SCLK delay	4	TCSN-SCLK	0.5			TSCLK	
MOSI setup time	4	T _{setup}	3			ns	
MOSI hold time	4	Thold	3			ns	
MISO output delay	4	T _{delay}			10	ns	

Figure 4: SPI timing diagram

3.12 Latency

The latency is defined as the number of clock cycles between the availability of the data (1st bit) on the serial links (xSL0 and xSL1, x= A, B, C or D) and the sampled input signal (INx, x= 0, 1, 2 or 3). Both xSL0 and xSL1 (x= A, B, C or D) have the same latency.

For each core and each SYNC (synchronous or asynchronous), the total latency is in the interval of [126,142] clock cycles as following:

- 5 clock cycles for the core conversion
- 121 clock cycles for the data encoding and serialization (ESIstream protocol)
- 0 to 16 clock cycles for the intrinsic synchronization feature.

As an example 1, latency could be:

- Latency DATA IN0 to ASL0/ASL1 = 126 clock cycles
- Latency DATA IN1 to BSL0/BSL1 = 132 clock cycles
- Latency DATA IN2 to CSL0/CSL1 = 140 clock cycles
- . Latency DATA IN3 to DSL0/DSL1 = 139 clock cycles

Figure 5: Latency example 1

As the example 2, new latency could be

- Latency DATA IN0 to ASL0/ASL1 = 130 clock cycles
- Latency DATA IN1 to BSL0/BSL1 = 140 clock cycles
- Latency DATA IN2 to CSL0/CSL1 = 135 clock cycles .
- Latency DATA IN3 to DSL0/DSL1 = 142 clock cycles .

Figure 6: Latency example 2

3.13 Digital Output Coding

Differential analog input	Voltage level	Binary MSB (bit 11)LSB (bit 0) InRange
> + 500.125 mV	>Top end of full scale + ½ LSB	1111111111 0
+ 500.125 mV	Top end of full scale + ½ LSB	11111111111 1
+ 500 mV	Top end of full scale - ½ LSB	11111111110 1
+ 0.125 mV	Mid scale + ½ LSB	100000000000 1
- 0.125 mV	Mid scale - ½ LSB	0111111111 1
- 500 mV	Bottom end of full scale + ½ LSB	00000000001 1
-500.125 mV	Bottom end of full scale - ½ LSB	00000000000 1
< - 500.125 mV	< Bottom end of full scale - 1/2 LSB	00000000000 0

3.14 Definition of Terms

	-	Definition of terms
Abbreviation	Term	Definition
(INL)	Integral non linearity	The Integral Non Linearity for an output code "I" is the difference between the measured input voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all [INL (i)].
(DNL)	Differential Non Linearity	The Differential Non Linearity for an output code is the difference between the measured step size of code i and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there are no missing output codes and that the transfer function is monotonic.
(FPBW)	Full Power Bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for an input at Full Scale -1 dB (-1 dBFS).
(EFPBW)	Extended Full Power Bandwidth	FPBW in extended mode
(NFPBW)	Nominal Full Power Bandwidth	FPBW in nominal mode
(SFDR)	Spurious free dynamic range	Ratio expressed in dB of the RMS signal amplitude, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dBFS (i.e., related to converter 0 dB Full Scale), or in dBc (i.e, related to input signal level).
(THD)	Total Harmonic Distortion	Ratio expressed in dB of the RMS summed up to nth harmonic components (typical n=25) to the RMS input signal amplitude. It may be reported in dBFS (i.e, related to converter 0 dB Full Scale), or in dBc (i.e, related to input signal level).
(TILD)	Total InterLeaving Distortion	Ratio expressed in dB of the RMS sum up to interleaving spurs (Fclock/4 +/- Fin, Fclock/2 - Fin, Fclock/4 in QUAD mode, and Fclock/2 +/- Fin in DUAL mode).
(ILG)	InterLeavinG	Interleaving of the internal cores.
(IMD3)	InterModulation Distortion	The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the worst third order intermodulation products.
(SNR)	Signal to noise ratio	Ratio expressed in dB of the RMS signal amplitude to the RMS sum of all other spectral components excluding the nine first harmonics.
(SINAD)	Signal to noise and distortion ratio	Ratio expressed in dB of the RMS signal amplitude to the RMS sum of all other spectral components except DC but including the harmonics and interleaving spurs.
(ENOB)	Effective Number Of Bits	$ENOB = \frac{SINAD - 1.76}{6.02}$
(NSD)	Noise Spectral Density	The NSD is the power spectral density magnitude of the ADC expressed in dBm/Hz.
(NPR)	Noise Power Ratio	The NPR is measured to characterize the ADC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise signal as the input to the ADC under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test.
(OTP)	One-Time Programmable	OTP memory cells are written during electrical test. They are used to store factory calibration values. They are loaded in SPI registers during device start-up (see §6)
(ORT)	Overvoltage recovery time	Time to recover 0.2 % accuracy at the output, after a 150 % full scale step applied on the input is reduced to midscale.
(T _A)	Aperture delay	Delay between the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point), and the time at which analog input (INxP, INxN where $X = 0, 1, 2$ or 3) is sampled.

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Abbreviation	Term	Definition
(JITTER)	Aperture uncertainty	Sample to sample variation in aperture delay. The voltage error due to jitter depends on the slew rate of the signal at the sampling point.
(TOD)	Digital data Output delay	Delay from SYNC to serial link data output (first alignement frame)
(TPD)	Pipeline Delay	Number of clock cycles from SYNC to serial link data output (first alignement frame).
(TR)	Rise time	Time delay for the output DATA signals to rise from 20% to 80% of delta between low level and high level.
(TF)	Fall time	Time delay for the output DATA signals to fall from 20% to 80% of delta between low level and high level.
(TS)	Settling time	Time delay to achieve 0.2 % accuracy at the converter output when a 80% Full Scale step function is applied to the differential analog input.
(TSYNC)	SYNC duration	External SYNC pulse width needed for SYNC function.
(CER)	Conversion Error Rate	Probability to exceed a specified error threshold for a sample at maximum specified sampling rate due to ADC quantization. An error code is a code that differs by more than +/- 128 LSB from the correct code.
(BER)	Bit Error Rate	Percentage of bits with errors divided by the total number of bits that have been transmitted, received or processed over a given time period.
(VSWR)	Voltage Standing Wave Ratio	The VSWR corresponds to the ADC input insertion loss due to input power reflection. For example a VSWR of 1.2 corresponds to a 20 dB return loss (ie. 99% power transmitted and 1% reflected).

4 PACKAGE DESCRIPTION

4.1 <u>Type /Outline</u>

HiTCE Ceramic Ball Grid Array CBGA323

- High TCE Glass-Ceramic substrate
- Body size: 16.0x16.0 mm
- Lands Pitch: 0.80 mm
- Number of balls: 323
- Conductor: cofired copper

Package interconnection

- 18x18 BGA matrix (323 balls, A1 removed)
- 0.80 mm ball pitch
- Ball type : SAC305 (for both AQ600 and AQ605) or Pb90Sn10 (only available for AQ600)
- MSL3 (non-hermetic)

Figure 7: Package cross-section

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G - May 2023

Figure 9: Package outline for SAC305 balls

4.2 **Pinout top view**

									Pack	age axis									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
А	\square	AGND	AGND	SYNCON	SYNCOP	AGND	CLKOUTN	CLKOUTP	AGND	AGND	CLKP	CLKN	AGND	SYNCTRIGP	SYNCTRIGN	AGND	AGND	DGND	A
в	DGND	DGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	DGND	DGND	в
С	miso	mosi	rstn	DGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	SSON	SSOP	AGND	DGND	DGND	VSPLSEL	С
D	GNDO	GNDO	DNC	csn	scik	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	DGND	DNC	GNDO	GNDO	D
Е	GNDO	GNDO	GNDO	DNC	DNC	DGND	AGND	AGND	VCCA	VCCA	AGND	AGND	DGND	DNC	DNC	GNDO	GNDO	GNDO	E
F	ASLIP	ASLIN	GNDO	GNDO	VCC_SPI	DGND	AGND	AGND	AGND	AGND	AGND	AGND	DGND	VCCD	GNDO	GNDO	DSLIN	DSLIP	F
G	GNDO	GNDO	GNDO	GNDO	DNC	VCCD	AGND	VCCA	VCCA	VCCA	VCCA	AGND	VCCD	DNC	GNDO	GNDO	GNDO	GNDO	G
н	ASLOP	ASLON	GNDO			VCCD	AGND	AGND	VCCA	VCCA	AGND	AGND	VCCD	vcco		GNDO	DSLON	DSLOP	н
J	GNDO	GNDO	GNDO	GNDO	GNDO	DGND	AGND	VCCA	AGND	AGND	VCCA	AGND	DGND	GNDO	GNDO	GNDO	GNDO	GNDO	J
к	BSLOP	BSLON	GNDO		vcco	VCCD	AGND	VCCA	VCCA	VCCA	VCCA	AGND	VCCD	vcco		GNDO	CSLON	CSLOP	к
L	GNDO	GNDO	GNDO	GNDO	GNDO	DGND	AGND	VCCA	AGND	AGND	VCCA	AGND	DGND	GNDO	GNDO	GNDO	GNDO	GNDO	L
м	BSL1P	BSL1N	GNDO	vcco	vcco	VCCD	AGND	AGND	VCCA	VCCA	AGND	AGND	VCCD	vcco	vcco	GNDO	CSLIN	CSLIP	М
N	GNDO	GNDO	GNDO	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	GNDO	GNDO	GNDO	Ν
Ρ	GNDO	GNDO	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	GNDO	GNDO	Ρ
R	DIODE_C	DIODE_A	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	DNC	CMIREF	R
т	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	т
U	AGND	AGND	AGND	INOP	INON	AGND	ININ	IN1P	AGND	AGND	IN2P	IN2N	AGND	INSN	IN3P	AGND	AGND	AGND	U
v	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	v
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
										1									

Figure 10: Pinout top view

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

	Package axis																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
A		AGND	AGND	SYNCON	SYNCOP	AGND	CLKOUTN	CLKOUTP	AGND	AGND	CLKP	CLKN	AGND	SYNCTRIGP	SYNCTRIGN	AGND	AGND	DGND	А
В	DGND	DGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	DGND	DGND	В
С				DGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	SSON	SSOP	AGND	DGND	DGND		с
D	GNDO	GNDO				AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	DGND		GNDO	GNDO	D
Е	GNDO	GNDO	GNDO			DGND	AGND	AGND	VCCA	VCCA	AGND	AGND	DGND			GNDO	GNDO	GNDO	E
F	31,9	24,9	GNDO	GNDO		DGND	AGND	AGND	AGND	AGND	AGND	AGND	DGND	VCCD	GNDO	GNDO	24,9	31,9	F
G	GNDO	GNDO	GNDO	GNDO		VCCD	AGND	VCCA	VCCA	VCCA	VCCA	AGND	VCCD		GNDO	GNDO	GNDO	GNDO	G
н	27,3	20,3	GNDO	vcco		VCCD	AGND	AGND	VCCA	VCCA	AGND	AGND	VCCD	vcco	vcco	GNDO	20,3	27,3	н
J	GNDO	GNDO	GNDO	GNDO	GNDO	DGND	AGND	VCCA	AGND	AGND	VCCA	AGND	DGND	GNDO	GNDO	GNDO	GNDO	GNDO	J
к	25,4	18,4	GNDO	vcco		VCCD	AGND	VCCA	VCCA	VCCA	VCCA	AGND	VCCD	vcco	vcco	GNDO	18,4	25,4	к
L	GNDO	GNDO	GNDO	GNDO	GNDO	DGND	AGND	VCCA	AGND	AGND	VCCA	AGND	DGND	GNDO	GNDO	GNDO	GNDO	GNDO	L
М	23,6	16,6	GNDO			VCCD	AGND	AGND	VCCA	VCCA	AGND	AGND	VCCD	vcco	vcco	GNDO	16,6	23,6	М
Ν	GNDO	GNDO	GNDO	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	GNDO	GNDO	GNDO	Ν
Ρ	GNDO	GNDO	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	GNDO	GNDO	Ρ
R			AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND			R
т	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	т
U	AGND	AGND	AGND	INOP	INON	AGND	IN1N	IN1P	AGND	AGND	IN2P	IN2N	AGND	IN3N	IN3P	AGND	AGND	AGND	U
V	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	v
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
									Pack	T age axis									
						Figur	e 11:	Skew	map	ping	g (val	ues a	re in j	os)					

4.3 Relative skew for serial links view

Those skew values are relative to the same reference. BSL1P skew value is 23.6 ps and BSL1N skew value is 16.6 ps. The relative skew value between BSL1P and BSL1N is 7 ps.

With a special care on the board routing, it is possible to compensate the relative skew between differential serial links (N&P).

Length on board + length on package are almost the same on N and P (less routing on board for P results from more routing inside package for P).

With this routing, Ansys HFSS simulations have shown only 0.7° phase difference between P and N at 6 GHz.

This electrical compensation is not perfect because of board and package ϵ r (relative permittivity) difference. HITCE package ϵ r is 5.2 (higher value than for usual board).

4.4 Thermal characteristics

Thermal characteristics

Parameter	Symbol	Value	Unit	Note
Thermal resistance from junction to bottom of balls	Rth Junction to Bottom of balls	4.0	°C/Watt	(1)(2)
Thermal resistance from junction to board (JEDEC JESD51-8)	Rth Junction - board	5.5	°C/Watt	(1)(2)
Thermal resistance from junction to top of lid	Rth Junction – lid	2.05	°C/Watt	(1)(2)
Thermal resistance from junction to ambient (JEDEC standard)	Rth Junction – ambient	19.2	°C/Watt	(1)(3)
Delta temperature Hot spot – temperature from diode		+6.2	°C	

Notes:

- 1. Rth are calculated from hot spot, not from average temperature of the die. They are thermal simulation results (finite elements method) with nominal cases.
- 2. Assumptions: no air, pure conduction, no radiation

_

- 3. Assumptions:
- Convection according to JEDEC
- o Still air
- Horizontal 2s2p board
- o Board size 114.3 x 76.2 mm, 1.6 mm thickness

4.5 **Pinout Table**

	- Pinout Table										
Pin Label	Pin number	Description	Direction	Simplified electrical schematics							
Power suppli	ies										
AGND	A2, A3, A6, A9, A10, A13, A16, A17; B3, B4, B5, B6, B7, B8, B9, B10, B11,B12, B13, B14, B15, B16; C5, C6, C7, C8, C9, C10, C11, C12, C15; D6, D7, D8, D9, D10, D11, D12, D13, D14; E7, E8, E11, E12 F7, F8, F9, F10, F11, F12; G7, G12; H7, H8, H11, H12; J7, J9, J10, J12; K7, K12; L7, L9, L10, L12; M7, M8, M11, M12; N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15; P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16; R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16; T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18; U1, U2, U3, U6, U9, U10, U13, U16, U17, U18; V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18;	Analog ground All ground pins must be connected to a one solid ground (analog + digital) plane on PCB									
DGND	A18; B1, B2, B17, B18; C4, C16, C17; D15; E6, E13; F6, F13; J6, J13; L6, L13;	Digital ground All ground pins must be connected to a one solid ground (analog + digital) plane on PCB									
GNDO	D1, D2, D17, D18; E1, E2, E3, E16, E17, E18; F3, F4, F15, F16; G1,G2, G3, G4, G15, G16, G17, G18;	Ground for Output buffers All ground pins must be connected to a one solid ground									

EV12AQ600 / EV12AQ605

Quad 12-bit 1.6 GSps ADC

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
	H3, H16; J1, J2, J3, J4, J5, J14, J15, J16, J17, J18; K3, K16; L1, L2, L3, L4, L5, L14, L15, L16, L17, L18; M3, M16 N1, N2, N3, N16, N17, N18; P1, P2, P17, P18;	(analog + digital) plane on PCB		
Vcca	E9, E10; G8, G9, G10, G11; H9, H10; J8, J11; K8, K9, K10, K11; L8, L11; M9, M10;	Analog power supply		
V _{CC_SPI}	F5	SPI output power		
Vccd	F14; G6, G13; H6, H13; K6, K13; M6, M13;	Digital power supply		
Vcco	H4, H5, H14, H15; K4, K5, K14, K15; M4, M5, M14, M15;	Output power supply		
Clock signal				
CLKP CLKN	A11, A12	In phase and Out of phase input clock signal	I	V _{CCA} 3.45KΩ 50Ω 50Ω 50Ω 50Ω 50Ω 50Ω 50Ω 50
CLKOUTP CLKOUTN	A8, A7	In phase and Out of phase out clock signal	ο	

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 56 DS 60S 218366 rev G – May 20

Quad 12-bit 1.6 GSps ADC

EV12AQ600 / EV12AQ605

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
Analog signa	als			
INOP INON	U4, U5	In phase analog input 0 Out of phase analog input 0 (must be unconnected if not used)	I	
IN1P IN1N	U8, U7	In phase analog input 1 Out of phase analog input 1 (must be unconnected if not used)	I	50 Ω 40 pF 40 pF 50 Ω 400 Ω 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω
IN2P IN2N	U11, U12	In phase analog input 2 Out of phase analog input 2 (must be unconnected if not used)	I	$\begin{array}{c c} & & & \\ \hline \\$
IN3P IN3N	U15, U14	In phase analog input 3 Out of phase analog input 3 (must be unconnected if not used)	I	
CMIREF	R18	Output voltage reference In AC coupling operation this output could be left floating (not used) In DC coupling operation, these pins provides an output voltage which is the common mode voltage for the analog input signal and should be used to set the common mode voltage of the input driving buffer.	Ο	
Digital Outpu	ıt signals (CML)		
ASLOP, ASLON	H1, H2	Channel A output data serial link 0	0	V _{cco}
ASL1P, ASL1N	F1, F2	Channel A output data serial link 1	0	
BSL0P, BSL0N	K1, K2	Channel B output data serial link 0	0	
BSL1P, BSL1N	M1, M2	Channel B output data serial link 1	0	
CSL0P, CSL0N	K18, K17	Channel C output data serial link 0	0	
CSL1P, CSL1N	M18, M17	Channel C output data serial link 1	0	
DSL0P, DSL0N	H18, H17	Channel D output data serial link 0	0	$\overline{\mathbf{O}}$
DSL1P, DSL1N	F18, F17	Channel D output data serial link 1	0	<u>_</u>

EV12AQ600 / EV12AQ605

Quad 12-bit 1.6 GSps ADC

Pin Label	Pin number	Description	Direction	Simplified electrical schematics
Digital outpu	it Signal (L	VDS)		
SSOP, SSON	C14, C13	In phase and out of phase Slow Synchro Output.Fsso=Fclk/32	ο	SSOP/ SYNCOP
SYNCOP, SYNCON	A5, A4	In phase and out of phase Sync Output.	0	SSON/SYNCON
Digital I/0 (Cl	MOS)		•	
VSPI_SEL	C18	used for logical level selection		
Sclk	D5	SPI signal Input SPI serial Clock Serial data is shifted into and out SPI synchronously to this signal on positive transition of sclk Internal pull-down	I	
Mosi	C2	SPI signal Data SPI Input signal (Master Out Slave In) Serial data input is shifted into SPI while sldn is active low Internal pull-down	I	
Csn	D4	SPI signal Input Chip Select signal (Active low) When this signal is active low, sclk is used to clock data present on MOSI or MISO signal Internal pull-up	I	
Rstn	СЗ	SPI signal Input Digital asynchronous SPI reset (Active low) This signal allows to reset the internal value of SPI to their default value Internal pull-up	I	

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 58 DS 60S 218366 rev G – May 20

EV12AQ600 / EV12AQ605

5 THEORY OF OPERATION

Overview

	- Functional description	ו	
Name	Function		
Vcca	Analog Power Supply		
Vccd	Digital Power Supply		<u>VccaVccdVccspi</u>
Vcco	Output buffer Power Supply		
Vcc_spi	SPI Output Power Supply (2.5V or 3.3V)	$N0 \longrightarrow N1$	\longrightarrow ASL0 \longrightarrow ASL1
Vspi_sel	Selection of SPI logical levels	IN3 →	
AGND	Analog Ground	CMIREF←	BSL0
DGND	Digital Ground		→ BSL1
GNDO	Ground for Output buffer	SYNC/TRIG →	> CSLO
INOP, INON	Differential Analog Input for ADC core A, core B, core C or core D (depending on cross point switch chosen configuration)		$EV12AQ60x \longrightarrow CSL1$
IN1P, IN1N	Differential Analog Input for ADC core B		→ DSL1
IN2P, IN2N	Differential Analog Input for ADC core C	VSPI_SEL	→ CLKOUT → SSO
IN3P, IN3N	Differential Analog Input for ADC core A, core B, core C or core D	sclk csn rstn	→ SYNCO
CLKP,CLKN	Differential Clock Input		
ASL0P, ASL0N	Channel A output, serial link0 (CML)	A	SND DGND GNDO
ASL1P, ASL1N	Channel A output, serial link1 (CML)		
BSL0P, BSL0N	Channel B output, serial link0 (CML)		
BSL1P, BSL1N	Channel B output, serial link1 (CML)	mosi	SPI input Data (Master Out Slave In)
CSL0P, CSL0N	Channel C output, serial link0 (CML)	miso	SPI Output Data (Master In Slave Out)
CSL1P, CSL1N	Channel C output, serial link1 (CML)	CMIRef	Input common Mode reference
DSL0P, DSL0N	Channel D output, serial link0 (CML)	DIODEA, DIODEC	Diode Anode and Cathode Inputs for die junction temperature monitoring
DSL1P, DSL1N	Channel D output, serial link1 (CML)	CLKOUTP, CLKOUTN	Differential output clock (copy of CLK)
csn	SPI Chip Select Input (Active Low)	SSOP, SSON	Slow Synchro Output clock
rstn	SPI Asynchronous Reset Input (Active Low)	SYNCTRIGP, SYNCTRIGN	LVDS input: Synchronization of Data Ready, or TRIGGER input depending on SPI selection
sclk	SPI Input Clock	SYNCOP, SYNCON	Synchro output, resynchronized SYNCTRIG signal

The EV12AQ60x could be configured as follow:

- Both the analog inputs settings and the associated clocking mode (in phase or interleaved) of the 4 cores can be selected though the SPI.
- Test modes can be selected though the SPI.
- Factory calibration or custom calibration can be loaded through the SPI.

Refer to §6 for registers description.

Taladyna any Samiaanductora SAS 2022	nogo 60	20	606 010066 rov C	May 200
and other important disclaimers.				
An Important Notice at the end of this datasheet addresses av	vailability, warranty, changes,	use in critical applications,	intellectual property	matters

DIGITAL RESET AND START-UP PROCEDURE 6

Start-up procedure uses SPI instructions and signals. Refer to §7 for a detailed description.

RSTN is an asynchronous active low global reset for the SPI and OTP (One-Time programmable) memory cells. It is mandatory to put RSTN at low level during a minimum of 10 µs at power-up of the device. It sets all SPI registers to their default values.

Figure 12 presents the reset and synchronization to realize after power-up when the SPI is used (see §7 for more information on the SPI interface).

Figure 12: Start-up sequence when using the SPI interface

- 1. It is mandatory to reset the device at power-up through RSTN. It is active low and the pulse must be at least 10 µs. During the RSTN pulse, CSN must be held high and SCLK held low. The CLK must be provided before the RSTN pulse. The CLK can start before or after the power-up.
- 2. The OTP memory cells need 1 ms to wake up.
- 3. The SPI instruction WRITE @0x0001 =0b1 must be sent to the ADC. The OTP memory cells are loaded into the SPI registers at this point. There must be at least 1 ms between the RSTN pulse and this SPI instruction;
- 4. The ADC is configured through the SPI interface.
- 5. A pulse is applied onto the SYNCTRIG input to reset the internal clocks (SYNC signal in Figure 12). At this stage, the Trigger mode is disabled.
- 6. The ADC can be configured in Trigger mode and the EXTRA SEE PROTECT register can be activated - see §8.15.
- 7. Normal operation of the ADC.

7 SERIAL PERIPHERAL INTERFACE (SPI)

The digital interface will be a standard SPI with:

- 16 bits for the address A[15] to A[0] including a R/W bit (A[15] = R/W, being A[15] is the MSB)
- 16 bits of data D[15] to D[0] with D[15] the MSB.

5 signals are required:

- RSTN for the SPI reset;
- SCLK for the SPI clock;
- CSN for the Chip Select;
- MISO for the Master In Slave Out SPI Output; .
- MOSI for the Master Out Slave In SPI Input.

The MOSI sequence should start with one R/W bit (A[15]):

- R/W = 0 is a read command
- R/W = 1 is a write command

7.1 SPI logic compatibility

Digital SPI CMOS input levels can be in 2.5 V or 3.3 V logic compatibility.

Digital SPI CMOS output levels can be configured in 2.5 V or 3.3 V logic compatibility¹.

- presents the SPI pins configuration depending on expected logic level.

The selection of logic compatibility is done in settings appropriate voltage levels to pins V_{CC_SPI} and V_{SPI_SEL} . Default logic compatibility is 2.5 V.

-	SPI pi	ins config	guration	depending	g on logi	c voltage	required
---	--------	------------	----------	-----------	-----------	-----------	----------

Logic Level	Vcc_spi pin voltage	VSPI_SEL pin voltage
2.5 V	2.5 V	0 V (GND)
3.3 V	3.3 V	3.3 V

7.2 SPI Read / Write command

All SPI registers must be addressed with 16-bit address followed by 16-bit data. The first bit A[15] (RW) is low for a read command and high for a write command.

Write command to access a 16-bit register:

See §3.5 for SPI timing characteristics (max clock frequency...)

D[15]

D[14] D[13] D[12] D[11] D[10] D[9] D[8]

Figure 14: SPI reading

D[7]

MISO

D[6] D[5] D[4] D[3] D[2] D[1] D[0]

¹ It is also possible to drive SPI logic in CMOS 1.8 V levels:

⁻ Output buffer configuration : V_{CC_SPI} = 1.8 V, and V_{SPI_SEL} = 0 V

⁻ Input buffer: The user has to strictly ensure that V_{IH} is > 1.7 V

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

7.3 **Register** map

- SPI register map									
Registers Names	@ hex	Default value hex	COMMENT	Refer to Table					
OTP_LOADING	0x0001		The action of writing in this register causes the loading of OTP memory cells in secure SPI register	-					
EXTRA_SEE_PROTECT	0x0002	0	Additional protection against Single Event 0: major protection is available (default) 1: additional protection is available SYNC is disabled The presence of the SPI clock, SCLK, refreshes Triple Majority Redundancy registers	-					
OUTPUT_CLK_EN	0x0017	2	For all following bits : 0: disabled 1: enabled bit[0] = CLKOUT enabled (disabled by default) bit[1] = SSO enabled (enabled by default) bit[2] = SYNCO enabled (disabled by default)	-					
SYNCO_SSO_CLKOUT_FU LL_SWING_EN	0x0005	0	For all following bits : 0: reduced 1: full swing bit[1] = LVDS full swing on SSO and SYNCO bit[0] = CML CLKOUT full swing	-					
AB_HSSL_FULL_SWING_E N	0x0006	0	bit[0] 0: HSSL output swing is reduced (default) 1: full HSSL output swing	-					
CD_HSSL_FULL_SWING_ EN	0x0007	0	bit[0] 0: HSSL output swing is reduced (default) 1: full HSSL output swing	-					
EXT_BW_DISABLE	0x0008	0	bit[0] 0: extended bandwidth (default) 1: nominal bandwidth	-					
CAL_SET_SEL	0x0009	0	bit[0] = INL calibration set selection 0: set 0 selected (default value) 1: set 1 selected (not defined) bit[2:1] = phase/gain/offset calibration set selection 00: set 0 selected 01: set 1 selected 10: set 2 selected 11: set 3 selected	-					
CLK_MODE_SEL	0x000A	0	bit[1:0] = clock control 11: clock A=B=C=D , all clocks are identical 10: clock A=C, clock B=D 01: clock A=B, clock C=D 00: all clocks are interleaved (default)	-					
CPS_CTRL	0x000B	0	1-channel mode 000 : input 0 to core A & B & C & D (default) 001 : input 3 to core A & B & C & D 2-channel mode 010 : input 0 to core A & B input 3 to core C & D 011 : input 0 to core C & D input 3 to core A & B 4-channel mode 100 : input 0 to core A input 1 to core B	-					

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Registers Names	@ hex	Default value hex	COMMENT	Refer to Table
			input 2 to core C input 3 to core D	
SYNC_CTRL	0x000C	0	bit[0] = sync_edge : Indicate system clock sampling edge for SYNC 0 : Positive edge 1 : Negative edge bit[2:1] = sync_shift : Add one(or more) system clock period on SYNC internal path 00 : No system clock period added 01 : One system clock period added 10 : two system clock periods added 11 : three system clock periods added	-
SYNC_FLAG	0x000D	0	bit [0] = Indicate timing violation on SYNC bit [0] = 0 : SYNC has been correctly recovered bit [0] = 1 :Timing violation on SYNC	-
SYNC_FLAG_RST	0x000E	0	bit [0] = 0 : reset the flag	-
CHIP_ID	0x0011		Chip Identification number	-
AB_HSSL_CFG	0x0013	18	bit[1:0] = Data selection CB1 00: InRange selected (default) 01: Trigger selected (=> Sync disabled) 10: Timestamp selected 11: Parity selected bit[3:2] = Data selection for CB2 00: InRange selected 01: Trigger selected (=> Sync disabled) 10: Timestamp selected (default) 11: Parity selected bit[4] = LSB first enabled 0: MSB first ' 1: LSB first (default)	-
CD HSSL CEG	0x0014	18	Idem AB HSSI CEG	-
AB_HSSL_POL	0x0015	06	For all following bits : 0: Pin N/P default 1: Pin N and P reversed bit[0] = Pin N/P config of serial output buffer 0 CHANNEL A bit[1] = Pin N/P config of serial output buffer 1 CHANNEL A bit[2] = Pin N/P config of serial output buffer 0 CHANNEL B bit[3] = Pin N/P config of serial output buffer 1 CHANNEL B	-
CD_HSSL_POL	0x0016	09	 For all following bits : 0: Pin N/P default 1: Pin N and P reversed bit[0] = Pin N/P config of serial output buffer 0 CHANNEL C bit[1] = Pin N/P config of serial output buffer 1 CHANNEL C bit[2] = Pin N/P config of serial output buffer 0 CHANNEL D bit[3] = Pin N/P config of serial output buffer 1 CHANNEL D 	-
OUTPUT_CLK_EN	0x0017	2	For all following bits : 0: disabled 1: enabled bit[0] = CLKOUT enabled (disabled by default)	-

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023

Quad 12-bit 1.6 GSps ADC

Registers Names	@ hex	Default value hex	COMMENT	Refer to Table
			bit[1] = SSO enabled (enabled by default) bit[2] = SYNCO enabled (disabled by default)	
A_SET0_GAIN_CAL	0x0122	0800	A core Interleaving gain calibration	-
A_SET0_PHASE_CAL	0x0123	0100	A core Interleaving phase calibration	-
A_SET0_OFFSET_CAL	0x0124	0100	A core Interleaving offset calibration	-
A_SET1_GAIN_CAL	0x0125	0800	A core Interleaving gain calibration	-
A_SET1_PHASE_CAL	0x0126	0100	A core Interleaving phase calibration	-
A_SET1_OFFSET_CAL	0x0127	0100	A core Interleaving offset calibration	-
A_SET2_GAIN_CAL	0x0128	0800	A core Interleaving gain calibration	-
A_SET2_PHASE_CAL	0x0129	0100	A core Interleaving phase calibration	-
A_SET2_OFFSET_CAL	0x012A	0100	A core Interleaving offset calibration	-
A_SET3_GAIN_CAL	0x012B	0800	A core Interleaving gain calibration	-
A_SET3_PHASE_CAL	0x012C	0100	A core Interleaving phase calibration	-
A_SET3_OFFSET_CAL	0x012D	0100	A core Interleaving offset calibration	-
A_SDA_CTRL	0x012F	1000	A core Sampling Delay Adjust (0 to 120 ps with a step of 30 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 30 fs bit[11:10]: coarse delay, step 30 ps bit[12] = SDA disabled 0: enabled 1: disabled (default)	-
B_SET0_GAIN_CAL	0x0322	0800	B core Interleaving gain calibration	-
B_SET0_PHASE_CAL	0x0323	0100	B core Interleaving phase calibration	-
B_SET0_OFFSET_CAL	0x0324	0100	B core Interleaving offset calibration	-
B_SET1_GAIN_CAL	0x0325	0800	B core Interleaving gain calibration	-
B_SET1_PHASE_CAL	0x0326	0100	B core Interleaving phase calibration	-
B_SET1_OFFSET_CAL	0x0327	0100	B core Interleaving offset calibration	-
B_SET2_GAIN_CAL	0x0328	0800	B core Interleaving gain calibration	-
B_SET2_PHASE_CAL	0x0329	0100	B core Interleaving phase calibration	-
B_SET2_OFFSET_CAL	0x032A	0100	B core Interleaving offset calibration	-
B_SET3_GAIN_CAL	0x032B	0800	B core Interleaving gain calibration	-
B_SET3_PHASE_CAL	0x032C	0100	B core Interleaving phase calibration	-
B_SET3_OFFSET_CAL	0x032D	0100	B core Interleaving offset calibration	-
B_SDA_CTRL	0x032F	1000	B core Sampling Delay Adjust (0 to 120 ps with a step of 30 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 30 fs bit[11:10]: coarse delay, step 30 ps bit[12] = SDA disabled 0: enabled 1: disabled (default)	-

Registers Names	@ hex	Default value hex	COMMENT	Refer to Table
C_SET0_GAIN_CAL	0x0522		C core Interleaving gain calibration	-
C_SET0_PHASE_CAL	0x0523		C core Interleaving phase calibration	-
C_SET0_OFFSET_CAL	0x0524		C core Interleaving offset calibration	-
C_SET1_GAIN_CAL	0x0525		C core Interleaving gain calibration	-
C_SET1_PHASE_CAL	0x0526		C core Interleaving phase calibration	-
C_SET1_OFFSET_CAL	0x0527		C core Interleaving offset calibration	-
C_SET2_GAIN_CAL	0x0528		C core Interleaving gain calibration	-
C_SET2_PHASE_CAL	0x0529		C core Interleaving phase calibration	-
C_SET2_OFFSET_CAL	0x052A		C core Interleaving offset calibration	-
C_SET3_GAIN_CAL	0x052B		C core Interleaving gain calibration	-
C_SET3_PHASE_CAL	0x052C		C core Interleaving phase calibration	-
C_SET3_OFFSET_CAL	0x052D		C core Interleaving offset calibration	-
C_SDA_CTRL	0x052F	1000	C core Sampling Delay Adjust (0 to 120 ps with a step of 30 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 30 fs bit[11:10]: coarse delay, step 30 ps bit[12] = SDA disabled 0: enabled 1: disabled (default)	-
D_SET0_GAIN_CAL	0x0722		D core Interleaving gain calibration	-
D_SET0_PHASE_CAL	0x0723		D core Interleaving phase calibration	-
D_SET0_OFFSET_CAL	0x0724		D core Interleaving offset calibration	-
D_SET1_GAIN_CAL	0x0725		D core Interleaving gain calibration	-
D_SET1_PHASE_CAL	0x0726		D core Interleaving phase calibration	-
D_SET1_OFFSET_CAL	0x0727		D core Interleaving offset calibration	-
D_SET2_GAIN_CAL	0x0728		D core Interleaving gain calibration	-
D_SET2_PHASE_CAL	0x0729		D core Interleaving phase calibration	-
D_SET2_OFFSET_CAL	0x072A		D core Interleaving offset calibration	-
D_SET3_GAIN_CAL	0x072B		D core Interleaving gain calibration	-
D_SET3_PHASE_CAL	0x072C		D core Interleaving phase calibration	-
D_SET3_OFFSET_CAL	0x072D		D core Interleaving offset calibration	-
D_SDA_CTRL	0x072F	1000	D core Sampling Delay Adjust (0 to 120 ps with a step of 30 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 30 fs bit[11:10]: coarse delay, step 30 ps bit[12] = SDA disabled 0: enabled 1: disabled (default)	-
	020005	1 /	Input common mode calibration for IN0 & IN1	
	0x0905	14	analog inputs	-
IN2_IN3_CMIREF	0x0906	14	Input common mode calibration for IN2 & IN3 analog inputs	-
IN0_IN1_RIN	0x0907	10	Input impedance calibration for IN0 & IN1 analog inputs	-
IN2_IN3_RIN	0x0908	10	Input impedance calibration for IN2 & IN3 analog inputs	-

Registers Names	@ hex	Default value hex	COMMENT	Refer to Table
AB_ROUT_HSSL	0x0909	55	CALIBRATION R LOAD CML bit[1:0] = R_cml0 channel A (for link0) bit[3:2] = R_cml1 channel A (for link1) bit[5:4] = R_cml0 channel B (for link0) bit[7:6] = R_cml1 channel B (for link1)	-
CD_ROUT_HSSL	0x090A	55	CALIBRATION R LOAD CML bit[1:0] = R_cml0 channel C (for link0) bit[3:2] = R_cml1 channel C (for link1) bit[5:4] = R_cml0 channel D (for link0) bit[7:6] = R_cml1 channel D (for link1)	-
DATA_MODE_SEL	0x0B07	7	For all following bits : 0: disabled 1: enabled bit[0] = PRBS enabled bit[1] = DATA enabled (0 means DATA=0) bit[2] = DC-Balance enabled	-
TEST_MODE	0x0B0A	0	For all following bits : 0: disabled 1: enabled bit[0] = ramp mode bit[1] = force VOH bit[2] = force VOL bit[3] = force decimation (/4)	-
	1		1	
A_CALC_OTP_CRC	0x0B0B		CRC calculated after a OTP loading	-
B_CALC_OTP_CRC	0x0B0 C		CRC calculated after a OTP loading	-
C_CALC_OTP_CRC	0x0B0E		CRC calculated after a OTP loading	-
D_CALC_OTP_CRC	0x0B0F		CRC calculated after a OTP loading	-
E_CALC_OTP_CRC	0x0B29		CRC calculated after a OTP loading	-
F_CALC_OTP_CRC	0x0B2A		CRC calculated after a OTP loading	-
	0.0044			1
	0X0B14			-
				-
				-
				_
F_OTP_CRC	C			-
			-	
AB_POWER_ON_PACK	0x0B02	FF	Power ON for A,B cores	-
CD_POWER_ON_PACK	0x0B03	FF	Power ON for A,B cores	-
AB_HSSL_POWER_ON	<u>ON</u> 0x0B00 3 A,B Seria		A,B Serial links Power ON	-
CD_HSSL_POWER_ON	₹_ON 0x0B01 3 C,D Serial links Power ON		C,D Serial links Power ON	-
CPS_POWER_ON	0x0B04	1	CPS_POWER_ON	-
AB_HSSL_IO_POWER_ON	0x0B05	F	A,B CML ouput Buffers_POWER_ON	-
ICD HSSL IO POWER ON	1 0x0B06	F	C.D CML ouput Buffers POWER ON	1 -

8 FUNCTIONALITIES DESCRIPTION

8.1 POWER ON mode

All internal blocks can be powered ON or OFF: CPS, anacore circuitry, digital circuitry, TH circuitry, latch circuitry, High Speed serial links (HSSL) and CML buffers (HSSL IO).

Figure 15 details the layout of these different internal blocks and their respective POWER ON registers.

Figure 15: Different Internal blocks

Internal blocks that can be powered ON or OFF and their respective register addresses.

Power-on mode for TH, anacore, latch and digital circuitry can be controlled via AB_POWER_ON_PACK and CD_POWER_ON_PACK registers, described in -.

CML buffers, HSSL and CPS blocks own dedicated registers described in - to -.

AB_POWER_ON_PACK and CD_POWER_ON_PACK registers description

Register Name @ Type S		Size	Default Value	Core	Comment	
AB_POWER_ON_PACK	0x0B02	RW	8	Ob1111111	А, В	bit[0] = power_on Latch A bit[1] = power_on Latch B bit[2] = power_on Digital A bit[3] = power_on Digital B bit[4] = power_on Anacore A bit[5] = power_on Anacore B bit[6] = power_on TH A bit[7] = power_on TH B 0 : power OFF 1 : power ON bit[15:8] = Reserved
CD_POWER_ON_PACK	0x0B03	RW	8	0b1111111	C, D	bit[0] = power_on Latch C bit[1] = power_on Latch D bit[2] = power_on Digital C bit[3] = power_on Digital D bit[4] = power_on Anacore C bit[5] = power_on Anacore D bit[6] = power_on TH C bit[7] = power_on TH D 0 : power OFF 1 : power ON bit[15:8] = Reserved

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Other blocks such as HSSL, CPS and HSSL_IO are addressed through dedicated SPI registers as described below.

- AB_HSSL_POWER_ON and CD_HSSL_POWER_ON registers description

Register Name	@	Туре	Size	Default Value	Core	Comment
AB_HSSL_POWER_ON	0x0B00	RW	2	0b11	A, B	bit[0] = power_on CHANNEL A serial link bit[1] = power_on CHANNEL B serial link 0 : power OFF 1 : power ON bit[15:2] = Reserved
CD_HSSL_POWER_ON	0x0B01	RW	2	0b11	C, D	bit[0] = power_on CHANNEL C serial link bit[1] = power_on CHANNEL D serial link 0 : power OFF 1 : power ON bit[15:2] = Reserved

CPS_ POWER_ON register description

Register Name	@	Туре	Size	Default Value	Core	Comment
CPS_ POWER_ON	0x0B04	RW	1	0b1	-	bit[0] = power_on CPS 0 : power OFF 1 : power ON bit[15:1] = Reserved

- AB_HSSL_IO_POWER_ON and CD_HSSL_IO_POWER_ON registers

description

Register Name	@	Туре	Size	Default Value	Core	Comment
AB_HSSL_IO_POWER_ON	0x0B05	RW	4	0b1111	А, В	CMLx : Serial link x buffer bit[0] = power_on CML1 channel A bit[1] = power_on CML2 channel A bit[2] = power_on CML1 channel B bit[3] = power_on CML2 channel B 0 : power OFF 1 : power ON bit[15:4] = Reserved
CD_HSSL_IO_POWER_ON	0x0B06	RW	4	0b1111	C, D	CMLx : Serial link x buffer bit[0] = power_on CML1 channel C bit[1] = power_on CML2 channel C bit[2] = power_on CML1 channel D bit[3] = power_on CML2 channel D 0 : power OFF 1 : power ON bit[15:4] = Reserved

In order to switch a core in its stand-by mode : latch, digital, anacore and TH circuitry, HSSL and CML buffers of the considered core are required to be powered-OFF.

A SYNC will be sufficient to apply the modifications done in the registers concerning blocks of the power-on mode. **To switch back a core in its power-on mode:** all these registers are required to be powered-ON. A SYNC, and eventually a FPGA-RESET, has to follow the registers' switches.

8.2 ADC Synchronization Signal (SYNCTRIGP, SYNCTRIGN)

The SYNCTRIGP, SYNCTRIGN LVDS inputs deliver SYNC signal for synchronization or TRIGGER signal for data Triggering. This section focuses on using the SYNC signal.

Since SYNC is multiplexed with TRIGGER, to perform synchronization, the ADC must be configured in synchronization mode. The SYNC function is enabled by default. Refer to AB_HSSL_CFG and CD_ HSSL_CFG registers in -.

The SYNC signal is mandatory in order to have a deterministic timing for the synchronization of the 4 cores (clock tree and digital reset) and for multiple ADCs time alignment.

It is asynchronous regarding the external clock. It is active high and should be compliant with the timing shown in the chronograms of Figure 12 and specified in - to work properly. It becomes effective on the rising edge of SYNCTRIGP, SYNCTRIGN.

8.3 Cross-point switch (CPS)

CPS functionality enables different input configurations by switching the signal to the dedicated core (A, B, C or D). IN0 and IN3 can address any core. IN1 and IN2 must be connected to core B and C if used, as described on the Figure 14 below:

Figure 16: CPS configurations

To interleave A to D cores, IN0 input can be used and register CPS_CTRL has to be set to 0. The right clock distribution has to be chosen (see §8.4).

Different CPS capabilities are described in register CPS_CTRL.

Register Name	@	Туре	Size	Default Value	Core	Comment
CPS_CTRL	0x000B	RW	3	0b0	All	1-channel mode bit[2:0] = 000 : input 0 to core A & B & C & D (default) bit[2:0] = 001 : input 3 to core A & B & C & D 2-channel mode bit[2:0] = 010 : input 0 to core A & B input 3 to core C & D bit[2:0] = 011 : input 0 to core C & D input 3 to core A & B 4-channel mode bit[2:0] = 100 : input 0 to core A input 1 to core B

CPS_CTRL register description

EV12AQ600 / EV12AQ605

Register Name	@	Туре	Size	Default Value	Core	Comment
						input 2 to core C input 3 to core D
						bit[15:3] = Reserved

8.4 <u>Clock interleaving</u>

_

Core A to D could be addressed one to one or interleaved two by two or all four together to reach 6.4 GSps. A dedicated register (CLK_MODE_SEL) has to be used to provide the right clock behavior to each core.

Register Name	@	Туре	Size	Default Value	Core	Comment
CLK_MODE_SEL	0x000A	RW	2	0Ь00	All	 bit[1:0] = clock control 11: clock A=B=C=D, all clocks are in phase 10: clock A=C, clock B=D, cores sequences: BA & DC 01: clock A=B, clock C=D, cores sequences: AC & BD 00: all clocks are interleaved (default), cores sequence: CDAB bit[15:2] = Reserved

CLK_MODE_SEL register description

Detailed clocks chronograms for each configuration are given in Figure 17 to Figure 20.

Above clocks mode configuration has to be associated with the case one Input IN0 (or IN3) of the CPS.

ClockC									
							i		
ClockD									
ClockA									
			-						
ClockB									
External									
CIUCK									

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

and interleaved of D and C CLK_MODE_SEL = 2

In this configuration, IN0 and IN3 inputs are used: IN0 provides signal to two cores while IN3 provides the two other cores input.

Figure 20: Clocks for two cores interleaving - configuration 2: Interleaving of A and C and interleaving of B and D CLK_MODE_SEL = 1
8.5 <u>Calibrations</u>

- Functions summary						
Calibration	Description					
Core gain adjust	ADC gain adjustment					
Core phase adjust	ADC sampling phase adjustment					
Core offset adjust	ADC DC offset adjustment					
CMiref	Input common mode adjustment					
Input impedance	100 ohm differential impedance adjustment					
CML buffer output impedance	100 ohm differential impedance adjustment					

The above functions are accessible through registers described in the following sections. Factory calibrated values are available in OTP memory cells and are loaded in registers by writing in OTP_LOADING register (-).

8.5.1 Core gain adjustment

-

The gain of each ADC core is independently adjustable thanks to built-in 12-bit DACs. 16 registers (y_SETx_GAIN_CAL with x=0, 1, 2, 3 and y= A, B, C, D) are available.

Register Name	@	Туре	Size	Default Value	Core	Comment	
A_SET0_GAIN_CAL	0x0122	W	12	0x800	А		
B_SET0_GAIN_CAL	0x0322	W	12	0x800	В	bit[11:0] = Gain value	
C_SET0_GAIN_CAL	0x0522	W	12	0x800	С	bit[15:12] = Reserved	
D_SET0_GAIN_CAL	0x0722	W	12	0x800	D		
A_SET1_GAIN_CAL	0x0125	W	12	0x800	А		
B_SET1_GAIN_CAL	0x0325	W	12	0x800	В	bit[11:0] = Gain value	
C_SET1_GAIN_CAL	0x0525	W	12	0x800	С	bit[15:12] = Reserved	
D_SET1_GAIN_CAL	0x0725	W	12	0x800	D		
A_SET2_GAIN_CAL	0x0128	W	12	0x800	А		
B_SET2_GAIN_CAL	0x0328	W	12	0x800	В	bit[11:0] = Gain value	
C_SET2_GAIN_CAL	0x0528	W	12	0x800	С	bit[15:12] = Reserved	
D_SET2_GAIN_CAL	0x0728	W	12	0x800	D		
A_SET3_GAIN_CAL	0x012B	W	12	0x800	А		
B_SET3_GAIN_CAL	0x032B	W	12	0x800	В	bit[11:0] = Gain value	
C_SET3_GAIN_CAL	0x052B	W	12	0x800	С	bit[15:12] = Reserved	
D_SET3_GAIN_CAL	0x072B	W	12	0x800	D		

The tuning range is equivalent to a 456 LSB variation of full scale (step of 0.11 LSB).

y_SETx_GAIN_CAL (hexa)	Fullscale variation (LSB)
0	264
800	0
FFF	-192
Excursion	456
Step	0.11

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

8.5.2 Core phase adjustment

-

The phase of each ADC core is independently adjustable thanks to built-in 9-bit DACs. 16 registers (y_SETx_PHASE_CAL with x=0, 1, 2, 3 and y= A, B, C, D) are available.

Register Name	@	Туре	Size	Default Value	Core	Comment	
A_SET0_PHASE_CAL	0x0123	W	9	0x0100	А		
B_SET0_PHASE_CAL	0x0323	W	9	0x0100	В	bit[11:0] = Phase value	
C_SET0_PHASE_CAL	0x0523	W	9	0x0100	С	bit[15:12] = Reserved	
D_SET0_PHASE_CAL	0x0723	W	9	0x0100	D	-	
A_SET1_PHASE_CAL	0x0126	W	9	0x0100	А		
B_SET1_PHASE_CAL	0x0326	W	9	0x0100	В	bit[11:0] = Phase value	
C_SET1_PHASE_CAL	0x0526	W	9	0x0100	С	bit[15:12] = Reserved	
D_SET1_PHASE_CAL	0x0726	W	9	0x0100	D	-	
A_SET2_PHASE_CAL	0x0129	W	9	0x0100	А		
B_SET2_PHASE_CAL	0x0329	W	9	0x0100	В	bit[11:0] = Phase value	
C_SET2_PHASE_CAL	0x0529	W	9	0x0100	С	bit[15:12] = Reserved	
D_SET2_PHASE_CAL	0x0729	W	9	0x0100	D	-	
A_SET3_PHASE_CAL	0x012C	W	9	0x0100	А		
B_SET3_PHASE_CAL	0x032C	W	9	0x0100	В	bit[11:0] = Phase value	
C_SET3_PHASE_CAL	0x052C	W	9	0x0100	С	bit[15:12] = Reserved	
D_SET3_PHASE_CAL	0x072C	W	9	0x0100	D		

y_SETx_PHASE_CAL registers description (x=0,1, 2, 3 and y= A, B, C, D)

The tuning range is equivalent to \pm 4.5 ps (step of 17 fs).

For wider range, SDA operation described hereafter could also be used.

y_SETx_PHASE_CAL (hexa)	phase variation
0	-4 ps
100	0
1FF	5 ps
Excursion	9 ps
Step	17 fs

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

8.5.3 Core offset adjustment

The Offset of each ADC core is independently adjustable thanks to built-in 9-bit DACs. 16 registers ($y_SETx_PHASE_CAL$ with x=0, 1, 2, 3 and y= A, B, C, D) are available.

Register Name	@	Туре	Size	Default Value	Core	Comment
A_SET0_OFFSET_CAL	0x0124	W	9	0x0100	А	
B_SET0_OFFSET_CAL	0x0324	W	9	0x0100	В	bit[11:0] = Offset value
C_SET0_OFFSET_CAL	0x0524	W	9	0x0100	С	bit[15:12] = Reserved
D_SET0_OFFSET_CAL	0x0724	W	9	0x0100	D	
A_SET1_OFFSET_CAL	0x0127	W	9	0x0100	А	
B_SET1_OFFSET_CAL	0x0327	W	9	0x0100	В	bit[11:0] = Offset value
C_SET1_OFFSET_CAL	0x0527	W	9	0x0100	С	bit[15:12] = Reserved
D_SET1_OFFSET_CAL	0x0727	W	9	0x0100	D	
A_SET2_OFFSET_CAL	0x012A	W	9	0x0100	А	
B_SET2_OFFSET_CAL	0x032A	W	9	0x0100	В	bit[11:0] = Offset value
C_SET2_OFFSET_CAL	0x052A	W	9	0x0100	С	bit[15:12] = Reserved
D_SET2_OFFSET_CAL	0x072A	W	9	0x0100	D	
A_SET3_OFFSET_CAL	0x012D	W	9	0x0100	А	
B_SET3_OFFSET_CAL	0x032D	W	9	0x0100	В	bit[11:0] = Offset value
C_SET3_OFFSET_CAL	0x052D	W	9	0x0100	С	bit[15:12] = Reserved
D_SET3_OFFSET_CAL	0x072D	W	9	0x0100	D	

y_SETx_OFFSET_CAL registers description (x=0,1, 2, 3 and y= A, B, C, D)

The tuning range is equivalent to +/- 75 LSB (step of 0.29 LSB)

y_SETx_OFFSET_CAL (hexa)	offset variation (LSB)
0	-75
100	0
1FF	75
Excursion	150
Step	0.29

8.5.4 Calibration selection

The device contains 4 predefined calibration sets. These sets address interleaving Gain, Phase and Offset registers. They ensure optimal interleaving performance depending on the condition of use.

See §9.3.1 for detailed application information.

One set is selected thanks to CAL_SET_SEL register.

CAL_SET_SEL register description

Register Name	@	Туре	Size	Default Value	Core	Comment
CAL_SET_SEL (*)	0x0009	RW	3	0b000	All	bit [0] = reserved bit[2:1] = phase/gain/offset calibration set selection 00: CalSet0 selected 01: CalSet1 selected 10: CalSet2 selected 11: CalSet3 selected bit[15:3] = Reserved

(*) Only CalSet0 and CalSet1 are available for AQ605

8.5.5 Input common mode calibration

ADC analog input can operates in DC coupling or AC coupling mode. To cope with previous amplifier output stage, ADC input common mode (CMIREF) can be trimmed via IN0_IN1_CMIREF and IN2_IN3_CMIREF registers described below.

Adjustment of input common mode can also be used to optimize ADC linearity.

Figure 21: Differential analog input implementation (DC coupled)

Pogistor Namo	@	Turno Sizo Default		Coro	Commont	
Register Name	<u>u</u>	Type	5120	Value	Core	Comment
						bit[4:0] = Input common mode calibration for A
IN0_IN1_CMIREF	0x0905	R/W	5	0x14	Α, Β	& B cores
						bit[15:5] = Reserved
						bit[4:0] = Input common mode calibration for C
IN2_IN3_CMIREF	0x0906	R/W	5	0x14	C, D	&D cores
						bit[15:5] = Reserved

	IN0_IN1_	CMIREF and IN2	_IN3_		registers	description	
--	----------	----------------	-------	--	-----------	-------------	--

IN0_IN1_CMIREF IN2_IN3_CMIREF (hexa)	CMIREF (V)
1F	1.555
10	1.580
0	1.680
Excursion	0.125
Step	4.1 ⁰⁻³

8.5.6 Input impedance calibration

_

ADC impedance matching is important to maximize power transmission. DC impedance can be trimmed digitally to 100 (Ω) with IN0_IN1_RIN and IN2_IN3_RIN registers to compensate process variation or optimized power transmission, with 2% accuracy.

Register Name	@	Туре	Size	Default Value	Core	Comment
IN0_IN1_RIN	0x0907	R/W	5	0x10	А, В	bit[4:0] = Value bit[15:1] = Reserved
IN2_IN3_RIN	0x0908	R/W	5	0x10	C, D	bit[4:0] = Value bit[15:5] = Reserved

IN0 IN1	RIN and IN2	IN3 RIN	registers	description
	_		<u> </u>	

IN0_IN1_RIN IN2_IN3_RIN (hexa)	Rin (Ω)
0	140
10	116
1F	85
Excursion	55
Step	1.7

8.5.7 CML output impedance calibration

ADC impedance matching is important to maximize power transmission. DC impedance of CML output buffers can be trimmed digitally to 100 (Ω) with AB_ROUT_HSSL (or CD_ROUT_HSSL) register on both cores A and B (C and D respectively) to compensate process variation or to optimize power transmission, with 5% accuracy. Note: CLKOUT CML output buffers impedance cannot be trimmed.

Register Name	@	Туре	Size	Default Value	Core	Comment
AB_ROUT_HSSL	0x909	R/W	8	0x55	А, В	CALIBRATION R LOAD CML bit[1:0] = R_cml0 channel A (for link0) bit[3:2] = R_cml1 channel A (for link1) bit[5:4] = R_cml0 channel B (for link0) bit[7:6] = R_cml1 channel B (for link1) bit[15:8] = Reserved
CD_ROUT_HSSL	0x90A	R/W	8	0x55	C, D	CALIBRATION R LOAD CML $bit[1:0] = R_cml0$ channel C (for link0) $bit[3:2] = R_cml1$ channel C (for link1) $bit[5:4] = R_cml0$ channel D (for link0) $bit[7:6] = R_cml1$ channel D (for link1) bit[15:8] = Reserved

AB ROUT HSSL and CD ROUT HSSL registers description

AB_ROUT_HSSL CD_ROUT_HSSL bit[2n+1;2n] (bin)	ROUT (Ω)					
[0;0]	83					
[0;1]	100					
[1;1]	125					
n = 0, 1, 2 or 3.						

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

8.6 Analog bandwidth

The ADC core Analog Bandwidth can be selected thanks to EXT_BW_DISABLE register (refer to dynamic characteristic on -).

EXT_BW_DISABLE register description

Register Name	@	Туре	Size	Default Value	Core	Comment
EXT_BW_DISABLE	0x0008	W	1	0b0	All	bit[0] = 0: extended bandwidth (default) 1: nominal bandwidth bit[15:1] = Reserved

8.7 SYNC, slow and fast output clocks (SSO, CLKOUT)

To use the SYNC signal internally, it should first be sampled by the internal clock. Though, as the SYNC is asynchronous, it may lead to metastability when the internal sampling clock edge is simultaneous with the SYNC signal transition. To prevent this phenomenon, different SPI registers have to be used.

SYNC_FLAG indicates whether the SYNC has been correctly recovered by the system clock or not.

SYNC_FLAG register description

Register Name	@	Туре	Size	Default Value	Core	Comment
SYNC_FLAG	0x000D	R	1	0b0	All	bit [0] = Indicate timing violation on SYNC 0 : SYNC has been correctly recovered 1 :Timing violation on SYNC

The flag is reset by writing at the SYNC FLAG RST register address:

SYNC_FLAG_RST register description

Register Name	0	Туре	Size	Default Value	Core	Comment
SYNC_FLAG_RST	0x000E	W	1	0b0	All	bit [0] = 0 : reset the flag

Two other SYNC_CTRL register's bits are used to configure the ADC. The first one, described in -, is the sync_edge. It indicates to the ADC the system clock edge to use in order to recover it. The other one is the sync_shift, helpfull to add one to three external clock delays before resetting the ADC timing. Thanks to these registers, the ADC timing can be reset and multiple ADCs can be synchronized.

SYNC CTRL register description

Register Name	@	Туре	Size	Default Value	Core	Comment
SYNC_CTRL	0x000C	W	3	0Ь00	All	bit[0] = sync_edge:Indicate system clock sampling edge for SYNC 0 : Positive edge 1 : Negative edge bit[2:1] = sync_shift : Add one (or more) system clock period on SYNC internal path 00 : No system clock period added 01 : One system clock period added 10 : Two system clock periods added 11 : Three system clock periods added

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 78 DS 60S 218366 rev G - May 2023 The slow output clock SSO (used in synchronization, frequency generation and as reference clock for serial link receiver) is not affected by SYNCTRIGP, SYNCTRIGN (not interrupted). It is an LVDS output generated by a 32 times division of the input clock.

The SYNC signal also starts the synchronization sequence of the serial interface.

CLKOUT is an output clock signal provided by the circuit as a clock reference to other ADCs. It has the same frequency as input clock CLKP, CLKN. The output signals SYNCOP, SYNCON result from the sampling of SYNCTRIGP, SYNCTRIGN signals by the system clock.

In order to reach deterministic resynchronization of several ADCs, it is recommended to chain the SYNC of ADC part N on the SYNCO of ADC part N-1. By this way, the delay between the different ADCs will be deterministic, and SYNC tree is still possible.

SYNCO, CLKOUT or SSO signals can be deactivated to save power when multiple ADC chaining is not used. The deactivation is done though OUTPUT CLK EN register:

Register Name	@	Туре	Size	Default Value	Core	Comment
OUTPUT_CLK_EN	@0x0017	W	3	0b010	All	For all following bit : 0: disabled 1: enabled bit[0] = CLKOUT enabled (disabled by default) bit[1] = SSO enabled (enabled by default) bit[2] = SYNCO enabled (disabled by default)

OUTPUT CLK EN register description

The signals swing can be reduced to save power though SYNCO_SSO_CLKOUT_FULL_SWING_EN register:

SYNCO_SSO_CLKOUT_FULL_SWING_EN register description

Register Name	@	Тур е	Size	Default Value	Core	Comment
SYNCO_SSO_CLKOUT_FULL_SWING _EN	@0x0005	W	2	0b00	All	For all following bit : 0: reduced 1: full swing bit[1] = LVDS full swing on SSO and SYNCO bit[0] = CML CLKOUT full swing

8.8 Input signal dynamic in-range detection (InRange mode)

InRange mode is activated using AB_HSSL_CFG and CD_HSSL_CFG registers (-).

CB1 or/and CB2 control bits of the serial output frame (see §9.2) is/are low when the ADC input signal is over the ADC dynamic range.

					<u></u>				
Register Name	@	Туре	Size	Default Value	Core	Comment			
AB_HSSL_CFG	0x0013	W	5	0b11000	А, В	bit[1:0] = CB1 configuration (see §9.2) 00: InRange selected (default) 01: Trigger selected (=> Sync disabled) 10: Timestamp selected 11: Parity selected bit[3:2] = CB2 configuration (see §9.2) 00: InRange selected 01: Trigger selected (=> Sync disabled) 10: Timestamp selected (default) 11: Parity selected bit[4] = LSB first enabled 0: MSB first 1: LSB first (default) bit[15:5] = Reserved			
CD_HSSL_CFG	0x0014	w	5	0b11000	C, D	<pre>bit[1:0] = CB1 configuration (see §9.2) 00: InRange selected (default) 01: Trigger selected (=> Sync disabled) 10: Timestamp selected 11: Parity selected bit[3:2] = CB2 configuration (see §9.2) 00: InRange selected 01: Trigger selected (=> Sync disabled) 10: Timestamp selected (default) 11: Parity selected bit[4] = LSB first enabled 0: MSB first 1: LSB first (default) bit[15:5] = Reserved</pre>			

AB_HSSL_CFG and CD_HSSL_CFG registers description

8.9 Trigger mode

Trigger mode is activated using AB_HSSL_CFG and CD_HSSL_CFG registers (-).

The SYNCTRIG input is an LVDS signal. It can be used in 2 different modes: Sync mode (refer to §8.7) or Trigger mode.

CB1 or/and CB2 control bits of the serial output frame (see §9.2) contain a copy of the SYNCTRIG input with the same pipeline delay as the sampled data (refer to timing diagram in the figure below).

Figure 22: Trigger mode timing diagram in serial interface

8.10 Serial output frame configuration

AB_H

CD HSSL FULL SWING EN

8.10.1 Serial output frame swing and polarity

0x0007

W

1

IO's consumption represents a non-negligible part of dissipation. In case of short routing (in the range of 10 cm) or lower receiver input swing capability, it is possible to reduce the output dynamic and so the consumption by using "swing adjust". IO's consumption can be reduced by 1/3.

Note: CLKOUT, SSO, SYNCO and serial link buffers (HSSL links) have independent dynamic settings. Refer to registers of - for CLKOUT, SSO and SYNCO swing setting.

The configuration is done via registers AB_HSSL_FULL_SWING_EN and CD_HSSL_FULL_SWING_EN.

	description									
Register Name	@	Туре	Size	Default Value	Core	Comment				
ISSL_FULL_SWING_EN	0x0006	W	1	0b0	A, B	bit[0] = 0: HSSL output swing is reduced (default) 1: full HSSL output swing bit[15:1] = Reserved				
						bit[0] =				

AB HSSI FULL SWING FN and CD HSSI FULL SWING FN registers

0: HSSL output swing is reduced (default)

1: full HSSL output swing

bit[15:1] = Reserved

It is also possible to invert the polarity of serial links outputs thanks to registers AB_HSSL_POL and CD_HSSL_POL.

0b0

AB HSSL POL and CD HSSL POL registers description

C. D

Register Name	@	Туре	Size	Default Value	Core	Comment
AB_HSSL_POL	0x0015	W	4	0b110	A, B	For all following bits : 0: Pin N/P default 1: Pin N and P reversed
						bit[0] = Pin N/P configuration of serial output buffer 0 CHANNEL A

Register Name	@	Туре	Size	Default Value	Core	Comment
						bit[1] = Pin N/P configuration of serial output buffer 1 CHANNEL A bit[2] = Pin N/P configuration of serial output buffer 0 CHANNEL B bit[3] = Pin N/P configuration of serial output buffer 1 CHANNEL B bit[15:4] = Reserved
CD_HSSL_POL	0x0016	W	4	0b110	C, D	For all following bits : 0: Pin N/P default 1: Pin N and P reversed bit[0] = Pin N/P configuration of serial output buffer 0 CHANNEL C bit[1] = Pin N/P configuration of serial output buffer 1 CHANNEL C bit[2] = Pin N/P configuration of serial output buffer 0 CHANNEL D bit[3] = Pin N/P configuration of serial output buffer 1 CHANNEL D bit[3] = Pin N/P configuration of serial output buffer 1 CHANNEL D bit[15:4] = Reserved

When these options are set, samples are output on serial links in one channel interleaved mode according to the timing diagram on Figure 23:

Figure 23: Timing diagram in serial interface in 1-channel mode

In dual interleaved mode, to reconstruct the output signal, BA (or DC) samples have to be considered such as on Figure 24:

Figure 25: Timing diagram in serial interface in 4-channel mode

8.10.2 Frame order identification (Timestamp mode)

Timestamp mode is activated using AB_HSSL_CFG and CD_HSSL_CFG registers (-).

CB1 or/and CB2 control bits of the serial output frame (see §9.2) contain one bit of a 127-bit PRBS sequence. Every 127 frames, it starts again with bit0.

The PRBS sequence is based on an LFSR of Galois architecture with the polynomial X⁷+X⁶+1. It is the same sequence for all links and is reset on SYNCTRIG pulse. It can be used to identify the samples order and/or check the synchronization of the serial interface.

8.10.3 12-bit data parity (Parity mode)

Parity mode is activated using AB_HSSL_CFG and CD_HSSL_CFG registers (-).

CB1 or/and CB2 control bits of the serial output frame (see §9.2) contain the parity of the 12-bit data.

It is calculated by performing an XOR combination between the 12 bits. It is output in the same frame as the data.

To enable this function, AB_HSSL_CFG and CD_HSSL_CFG registers (-) must be used.

8.10.4 Serial link bits order

In the serial link output frame (see §9.2), using AB_HSSL_CFG and CD_HSSL_CFG registers bit[4], it is possible to define the order (MSB or LSB first) of the converted data (bit[11:0])

8.11 Serial link decimation

Figure 26 shows how the data is outputted on the 2 serial links of each ADC core, xSL0 & xSL1 where x can be A, B, C or D. Link0 outputs data N+2k while link1 outputs data N+(2k+1) (with $k \in |N|$).

xSLO	Data N	Data N+2	Data N+4	Data N+6
xSL1	Data N+1	Data N+3	Data N+5	Data N+7

Figure 26: Output data on each serial link.

Powering down one of the links provides a simple way to decimate the output data flow by 2 while lowering power consumption.

Intrinsic x2 decimation

(
xSLO	Data N	Data N+2	Data N+4	Data N+6						
xSL1	Data N+1	Data N++	Pata N+5	Data N+7						

Link powered down

Figure 27: Powering down 1 link gives a x2 decimation.

Serial link can be powered down by using the registers described in AB_HSSL_IO_POWER_ON and CD_HSSL_IO_POWER_ON registers (-).

8.12 Test modes and Data modes

.

Multiple test modes are available and can be generated by the ADC:

- PRBS : generates a pseudo-random binary sequence on the output
 - Ramp : generates a ramp on the output

See below the registers used to enable or disable the different test modes:

Register Name	@	Туре	Size	Default Value	Core	Comment
TEST_MODE	@0x0B0A	w	4	0b0000	All	For all following bits : 0: disabled 1: enabled
						bit[0] = ramp mode
DATA_MODE_SEL	@0x0B07	W	3	0b111	All	0: disabled 1: enabled (default) bit[0] = PRBS enabled bit[1] = DATA enabled (0 means DATA=0)
						bit[1] = DATA enabled (0 means DATA bit[2] = DC-Balance enabled

TEST_MODE & DATA_MODE_SEL registers description

8.12.1 Ramp mode

In ramp mode, the data encoded corresponds to a 12-bit ramp value with only the even values on lane 1 and the odd values on lane 2.

See below the chronogram of the ramp test mode. The data shown in the following figure 24 only presents the 14 bits data from the ADC (12 bits sample value plus 2 control bits CB1 and CB2) and does not include the encoding of the ESIstream protocol which is used on the serial interface, in order to understand the ramp test mode (for more information on CB1 and CB2, see paragraph \Box).

Figure 28: Chronogram of the Ramp test mode

8.12.2 PRBS and DATA

If PRBS is enabled, Pseudo Random Bit Sequence is generated. It can be:

- Added to data (PRBS enabled and DATA enabled)
 - Outputted without data (PRBS enabled and DATA disabled)

PRBS and DATA modes are enabled by default and scrambling is done using a LFSR (Linear Feedback Shift Register). See ESIstream protocol §9.2.1

8.12.3 DC balance

There are two main issues in serial transmission. First, the transmission must be DC balanced to avoid voltage imbalance issues while allowing AC coupling between transmitter and receiver. The second issue is brought by the CDR in the receiver. This component uses the edges in the transmission to recover the clock. Thus, if there are long series of '1' or '0', the lock can be lost in the receiver.

To avoid this kind of problem, a DC balance can be added using bit[15] of the ESIstream protocol frame: if bit[15] is set to 1, the bits parity is inverted. Otherwise, nothing is done.

8.13 CRC CHECKING

In order to check OTP cells are not corrupted and have been successfully loaded in SPI registers during device startup (see §6), CRCs (Cyclic Redundancy Check) are calculated and written in OTP cells during electrical test. Those are the CRC reference values.

During device start-up,

- OTP memory cells are loaded in SPI registers
- In particular, CRC reference values are loaded in x OTP CRC registers (x = A, ..., F)
- CRC of the SPI registers are calculated and written in x CALC OTP CRC registers (x = A, ..., F)

By comparing x_OTP_CRC registers (x = A, ..., F) and x CALC OTP CRC registers (x = A, ..., F), it is possible to detect any cells corruption.

Register Name	@	Туре	Size	Default Value	Core	Comment
OTP_LOADING	@0x0001	W	1	NA	All	bit[0] = to load OTP values into the SPI registers. 0 or 1 : load OTP values into SPI registers This is a write only register
A_CALC_OTP_CRC	@0x0B0B	R	16	N/A	А	CRC of SPI registers calculated after a OTP loading
B_CALC_OTP_CRC	@0x0B0C	R	16	N/A	В	CRC of SPI registers calculated after a OTP loading
C_CALC_OTP_CRC	@0x0B0E	R	16	N/A	С	CRC of SPI registers calculated after a OTP loading
D_CALC_OTP_CRC	@0x0B0F	R	16	N/A	D	CRC of SPI registers calculated after a OTP loading
E_CALC_OTP_CRC	@0x0B29	R	16	N/A	A & B	CRC of SPI registers calculated after a OTP loading
F_CALC_OTP_CRC	@0x0B2A	R	16	N/A	C & D	CRC of SPI registers calculated after a OTP loading

CRC registers description

Register Name	@	Туре	Size	Default Value	Core	Comment
A_OTP_CRC	@0x0B14	R	16	N/A	А	CRC of OTP cells
B_OTP_CRC	@0x0B15	R	16	N/A	В	CRC of OTP cells
C_OTP_CRC	@0x0B17	R	16	N/A	С	CRC of OTP cells
D_OTP_CRC	@0x0B18	R	16	N/A	D	CRC of OTP cells
E_OTP_CRC	@0x0B2B	R	16	N/A	A & B	CRC of OTP cells
F_OTP_CRC	@0x0B2C	R	16	N/A	C & D	CRC of OTP cells

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

8.14 CHIP ID

Chip ID can be read though dedicated register CHIP ID described below:

CHIP_ID register description									
Register Name	@	Туре	Size	Default Value	Core	Comment			
CHIP_ID	0x0011	R	16	0x914	-	Chip id value is 0x914			

8.15 Single event protection

All sensitive areas of the device have been protected to increase robustness. This includes but is not limited to clock circuitry and SPI registers. To improve even more the robustness, an extra protection mode has been implemented. It can be activated through the EXTRA SEE PROTECT register.

EXTRA_SEE_PROTECT register descript	ion
-------------------------------------	-----

Register Name	@	Туре	Size	Default Value	Core	Comment
EXTRA_SEE_PROTECT	0x0002	RW	1	0b0	All	Additional protection against Single Event 0: major protection is available (default) 1: additional protection is available SYNC is disabled The presence of the SPI clock, SCLK, refreshes Triple Majority Redundancy registers

Enabling register EXTRA_SEE_PROTECT by writing '1' disables the SYNCTRIG input when in SYNC mode and thus prevents unwanted timing reset of the ADC (see §8 for more information). The SPI clock (SCLK) can be provided from time to time to refresh the SPI (and flush out any SE that would have impacted one branch of the TMR). When it is necessary to the ADC, this register needs to be set back to '0'.

The consequences of extra SEE protection activation are described in -.

Consequences of extra SEE protection activation

	PROTECTION OFF	PROTECTION ON
SYNC mode	SYNC possible	SYNC deactivated
Trigger mode	No SYNC possible, Trigger mode operating	
Registers	Registers can be modified by OTP or SPI	

8.16 SDA operation

The effective sampling instant of each ADC core can be adjusted independently via registers x_SDA_CTRL (with x=A, B, C or D) thanks to two built-in fine and coarse internal clock shifters (fine: 1023 steps of 37 fs, coarse: addition of 0, 1, 2 or 3 delay of 37 ps).

The total tuning range is 150 ps. Delay is set only through SPI instructions. By default, SDA is disabled (by-passed). Activating the SDA has an impact on the jitter performance of the device.

This function is available in 2-channel and 4-channel modes. Contact GRE-HOTLINE-BDC@TELEDYNE.COM for availability in 1-channel mode.

A_SDA_CTRL, B_SDA_CTRL, C_SDA_CTRL and D_SDA_CTRL registers decorintion

Deviate N	6	т		Default	0.	O -must
Register Name	@	Гуре	Size	Value	Core	Comment
A_SDA_CTRL	0x012F	W	13	0x1000	А	A core Sampling Delay Adjust (0 to 150 ps with a step of 37 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 37 fs bit[11:10]: coarse delay, step 37 ps bit[12] = SDA disabled 0: enabled 1: disabled (default) bit[15:13] = Reserved
B_SDA_CTRL	0x032F	W	13	0x1000	В	B core Sampling Delay Adjust (0 to 150 ps with a step of 37 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 37 fs bit[11:10]: coarse delay, step 37 ps bit[12] = SDA disabled 0: enabled 1: disabled (default) bit[15:13] = Reserved
C_SDA_CTRL	0x052F	W	13	0x1000	С	C core Sampling Delay Adjust (0 to 150 ps with a step of 37 fs) bit[11:0] = SDA value bit[9:0]: fine delay, step 37 fs bit[11:10]: coarse delay, step 37 ps bit[12] = SDA disabled 0: enabled 1: disabled (default) bit[15:13] = Reserved
D_SDA_CTRL	0x072F	W	13	0x1000	D	D core Sampling Delay Adjust (0 to 150 ps with a step of 37 fs) bit[11:0] = SDA value bit [9:0]: fine delay, step 37 fs bit[11:10]: coarse delay, step 37 ps bit[12] = SDA disabled 0: enabled 1: disabled (default)

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Quad 12-bit 1.6 GSps ADC

Register Name	@	Туре	Size	Default Value	Core	Comment
						bit[15:13] = Reserved

8.17 Die junction temperature monitoring diode

Two pins are provided so that the diode can be probed using standard temperature sensors. Maximum current allowed on this pin is 1.2 mA.

The diode measures the junction temperature which is 7.5 °C below the hot spot (but higher than die average temperature)

Note: If the diode function is not used, the diode pins can be left unconnected (open). If diode is used it is mandatory to connect DiodeC to GND.

Figure 30: Diode voltage vs temperature for 3 different input currents (blue: 1 mA, green: 200 µA, red: 100 µA)

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Figure 31: Voltage vs temperature. Blue=diode voltage - Green=hot-spot junction voltage- Red=case voltage.

8.18 Default mode

4 ADC cores are interleaved ⁽¹⁾. .

- Serial buffer in reduced swing (low power) mode
- Extended analog bandwidth selected .

⁽¹⁾ To maximize interleaved performances refer to §9.3

- Fun	ctionalities summary	y
Functionality / mode	By default ⁽¹⁾	Description
Decimation	Disabled	8 HSSL lanes by default
Swing adjust	Enabled	Reduced swing
Input common mode value	1.6 V	
Input impedance value	100 Ω	
CML impedance value	100 Ω	
Gain Adjust	0 LSB	
Offset Adjust	0 LSB	
Phase adjust	0 ps	
SDA	Disabled	Function available in 2-channel and 4-channel modes ⁽²⁾
Power ON Mode	No standby	
InRange	Enabled	Input signal in the ADC dynamic range or not
Sync / Trigger mode	Sync mode	
Test mode	Disabled	Input signal is sampled and encoded (instead of an internal ramp)
Analog bandwidth	Extended	
SEE protection	Disabled	
Junction temperature monitoring	NA	Refer to §8.17

Note (1): After the Start-up procedure (refer to §6).

Note (2): Contact GRE-HOTLINE-BDC@TELEDYNE.COM for availability of SDA function in 1-channel mode.

9 APPLICATION INFORMATION

9.1 <u>Power supplies</u>

9.1.1 **Power supply ramp-up**

Supplies settling time should be faster than 10 ms. No specific power sequencing is required. However, in order to avoid possible current peak at Start-up, it is recommended to use the following sequence: V_{CCD}/V_{CCO}/V_{CCA}. V_{CC_SPI} can be powered up at any time.

9.1.2 **Decoupling and grounding**

As close as possible to each power supply sources (V_{CCA} , V_{CCO} , V_{CC_SPI}) and depending on the linear regulators specifications, 100 nF and 22 μ F capacitors in parallel are recommended.

As close as possible to the EV12AQ60x power supply pins, it is recommended to add a decoupling capacitors for each V_{CCA}-AGND, V_{CCD}-DGND, V_{CCO}-GNDO neighboring pins described in Figure 10 and - to -. The value of the capacitance for each neighboring pins is provided in Figure 32.

Figure 32: Power Supplies decoupling scheme

List of recommended neighboring pins for V_{CCA} decoupling

	(Vcca - AGND)									
Pins (E9-D9)	(E10-D10)	(G9-F9) (G10-F10)	(G11-F11)) (G8-F8)	(J8-H8)	(J11-H11)	(H9-J9)	(H10-J10)	
Pins (K8-K7)	(K11-K12)	(K9-L9) (H	K10-L10)	(L8-M8) (L	.11-M11)	(M9-N9)	(M10-N10))		

List of recommended neighboring pins for V_{CCD} decoupling

(VCCD - DGND)

Pins (G6-G7) (H6-J6) (K6-L6) (M6-N6) Pins (G13-G12) (H13-J13) (K13-L13) (M13-N13) (F14-F13)

List of recommended neighboring pins for V_{CCO} decoupling

(Vcco - GNDO)

Pins (H4-J4) (M4-L4) (K4-K3) (H5-J5) (M5-L5) Pins (H14-J14) (M14-L14) (K15-K16) (H15-J15) (M15-L15)

9.2 High Speed Serial Interface

ESIstream protocol specifications, example designs and simulations available on <u>www.esistream.com</u>.

ESIstream provides an efficient 14b/16b high-speed serial data transmission protocol deploying Current Mode Logic (CML) transceivers. It is license-free and supports in particular serial communication between FPGAs and High-Speed data converters.

ESIstream protocol initiated by Teledyne-e2v is born from a severe need of the following combination:

- Reduced data overhead on serial links, as low as possible.
- Increased rate of useful data when linking ADCs operating at GSPS speeds with FPGAs on a serial interface.

- Simplified hardware implementation. It uses low logic resources and it is simple enough to be built on RF SiGe technologies.

An ESIstream system comprises at a minimum a transmitter and a receiver.

- A transmitter can be an ADC or an FPGA or an ASIC
- A receiver can be a DAC or an FPGA or an ASIC
- A number of lanes (L \geq 1) to transmit serial data
- A synchronization signal (sync) to initialize the communication.

Figure 33: ESIstream system example using EV12AQ60x ADC

ESIstream uses 14/16 bit coding giving it a 87.5% data rate efficiency. In other words, the encoding takes 14-bit of raw data, the data word, and adds two bits of protocol overhead. The overhead comprises a Clock Bit (Clk) which provides a data lane monitor of continuous link synchronization and the Disparity Bit (DB), which is used to ensure that a deterministic DC balance is maintained for each data lane. The 16-bit ESIstream frame comprises a scrambled version of the data word combined with the overhead bits.

Each data word contains a 12-bit sample and 2 control bits, CB1 & CB2 (defined using AB_HSSL_CFG and CD_HSSL_CFG registers, -), are added.

To ensure statistical DC balanced transmission, the data word is first scrambled. The ESIstream transmit encoding system comprises a linear feedback shift register (LFSR) which generates a pseudo random binary sequence (PRBS), based on a Fibonacci polynomial. The PRBS is used to scramble the data word.

Figure 34: TX 14-bit scrambling process principle

Then the 14-bits frame is encoded. The encoding process comprises concatenation of the clock bit, a disparity processing applied on the 15 LSB bits (data word + clock bit) and concatenation of the disparity bit.

Figure 35: TX 16-bit encoding process principle

The 16-bit frame thus obtained is sent through high-speed serial link. By default, frames are transmitted LSB first.

During normal operation, the synchronization of the serial links can be monitored through the clock bit (Clk) which toggles between each frame. If the receiver does not detect that the Clk bit is toggling properly, then it can state that the link is not synchronous or has lost its synchronization and restarts the synchronization process. Another option is to use the timestamp control bit (§8.10.2) of the ADC to monitor the interface synchronization.

9.2.1 ESIstream protocol

9.2.1.1 Synchronization

The link must be synchronized to align the frames between the transmitter and the receiver and to synchronize the reception scrambler with the transmission scrambler.

The synchronization works in 2 steps and starts when the ADC receives a SYNCTRIG pulse in SYNC mode (refer to §8).

ESIstream starts the link synchronization using a synchronization signal, the SYNC pulse.

On a SYNC pulse, the transmitter sends the synchronization sequence to the receiver. The synchronization sequence is composed of the Frame Alignment Sequence (FAS) and of the PRBS alignment sequence (PAS).

- The FAS, 32 frames alternating between 0xFF00 and 0x00FF, allows aligning all the frames sent between the transmitter and the receiver. As the sequence is already DC balanced, the sequence bypasses the scrambling and disparity processing.

- The PAS, 32 frame containing only the scrambling PRBS of the transmitter, allows synchronizing the descrambler of the receiver with the scrambler of the transmitter. The sequence go through the disparity processing, as the PRBS value will start to impact the running disparity of the transmission.

After the 64 frames of the synchronization sequence, the next frame contains the first valid data of the transmission. For each lane of the serial link, when the receiver receives the first valid data, it stores it and the following ones in an output buffer.

The SYNC pulse must be sent first to the receiver and after a delay, the SYNC pulse can be sent to the transmitter. This way, the receiver is ready to receive the synchronization sequence before transmitter sends it.

SYNCTRIG pulse

	0x(00FF	0xFF00		0x00FF	0xFF00	PRBSn	PRBSn+1		PRBSn+30	PRBSn+31
--	-----	------	--------	--	--------	--------	-------	---------	--	----------	----------

32 Frames for frame alignment

32 Frames for PRBS initialization

Figure 36: Synchronization sequence

When the transmitter (ADC) detects the SYNCTRIG pulse, it will send synchronization sequence on each serial lanes.

Figure 37: Frame sent for PRBS initialization

The receiver also embeds a LFSR based on the same Fibonacci polynomial than the transmitter. The receiver will detect the transition between the FAS and PAS and will use a minimum of two PRBS data frames to initialize its LFSR.

Once initialized, the receiver LFSR is synchronized with the transmitter LFSR and it starts generating the same PRBS values used by the transmitter to scramble the data. Then, the receiver uses the PRBS values to descramble the received frames applying a XOR bitwise operation between PRBS value and received scrambled data word.

After this synchronization sequence, the link synchronization is complete.

9212 Scrambling

Applying scrambling ensures a statistical DC balanced transmission. It also statistically ensures that there are enough transitions within the transmitted data stream to ensure the link remains locked at the receive end of the link. It is necessary to comply with these constraints otherwise the Clock and Data Recovery (CDR) module used by the receiver may lose its lock and the data would be corrupted.

The scrambling technique used in ESIstream is an additive scrambling to avoid error propagation in case of a single bit error. It is based on Fibonacci architecture using the following polynomial: $X^{17}+X^3+1$. It has a run length of 2^{17} -1. Instead of using a shift of one bit per operation, it uses shifts of 14 bits per operation to adapt to the size of the data being scrambled.

The equations to use to generate this PRBS are as follow:

 $LFSR_{n+1}(0) = LFSR_n(14)$ $LFSR_{n+1}(1) = LFSR_n(15)$ $LFSR_{n+1}(2) = LFSR_n(16)$ $LFSR_{n+1}(3) = LFSR_n(0) \text{ xor } LFSR_n(3)$ $LFSR_{n+1}(4) = LFSR_n(1) \text{ xor } LFSR_n(4)$ $LFSR_{n+1}(5) = LFSR_n(2) \text{ xor } LFSR_n(5)$ $LFSR_{n+1}(6) = LFSR_n(3) \text{ xor } LFSR_n(6)$ $LFSR_{n+1}(7) = LFSR_n(4) \text{ xor } LFSR_n(7)$ $LFSR_{n+1}(8) = LFSR_n(5) \text{ xor } LFSR_n(8)$ $LFSR_{n+1}(9) = LFSR_n(6) \text{ xor } LFSR_n(9)$ $LFSR_{n+1}(10) = LFSR_n(7) \text{ xor } LFSR_n(10)$ $LFSR_{n+1}(11) = LFSR_n(8) \text{ xor } LFSR_n(11)$ $LFSR_{n+1}(12) = LFSR_n(9) \text{ xor } LFSR_n(12)$ $LFSR_{n+1}(13) = LFSR_n(10) \text{ xor } LFSR_n(13)$ $LFSR_{n+1}(14) = LFSR_n(11) \text{ xor } LFSR_n(14)$ $LFSR_{n+1}(15) = LFSR_n(12) \text{ xor } LFSR_n(15)$ $LFSR_{n+1}(16) = LFSR_n(13) \text{ xor } LFSR_n(16)$

The PRBS is applied to the data word (or useful data) as follow; the 14 LSB of the PRBS are the bits used to scramble the data.

Figure 38: LFSR operation

9.2.1.3 Encoding

After encoding, a frame contains 16 bits (14 bits of scrambled data and 2 bits of overhead). The first overhead bit is the clk bit; it toggles at every frame. The other is the disparity bit of the 14-bit scrambled data + clock bit. Its objective is to ensure deterministically the advantages brought statistically by the scrambling process.

Figure 39: Frame format after encoding

Even with scrambling, large running disparity can still occur with very low probability and could produce excessive eye shifts. These eye shifts could be balanced by a more complicated equalization stage in the receiver if the running disparity was still limited. However, a PRBS does not bind the running disparity deterministically, thus the data could be corrupted on the reception end and it could eventually cause the CDR to lose its lock. To prevent this, the disparity bit is implemented.

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G - May 2023 page 97 Teledyne e2v Semiconductors SAS 2023

For each lane and for each frame, transmitter constantly calculates and monitors the running disparity.

- If the running disparity of the transmission does not increase above +/- 15 (+15 and -15 included). In this case, the disparity bit is set to '0' and the 15 bits of data (scrambled data + clk bit) are transmitted as such.

- If the running disparity of the transmission does increase above +/-15 (+15 and -15 excluded). In this case, the 15 bits of data (scrambled data + clk bit) are inverted, using a bit-to-bit not operation, and the disparity bit is set to '1'.

This disparity bit ensures that the longest possible series of '1' or '0' transmitted is of 48 bits (the clk bit reduces this value effectively to 32). It also ensures that the running disparity does not exceed +/- 15 (included) which satisfies the DC balance condition.

In normal operating mode, the receiver will check the disparity bit (DB) first.

If DB is high then a not bitwise operation is applied on the received data, then data are descrambled.

If DB is low, data are directly descrambled.

9.2.2 Multi-lanes synchronization

The ESIstream receiver (RX) integrates an output buffer to compensate for the skew between each lane.

After the ESIstream Synchronization Sequence (ESS), the first valid data starts to be written in the output buffer. When the first valid data has been found on all lanes (i.e. lanes_ready signal rises), the data starts to be read from buffers outputs (i.e. data allowed to propagate). For all lanes, this operation ensures data alignment at the buffers outputs.

Figure 40: Single ADC standard serial link synchronization principle

ane decoding outr	nits											Start to	o write										
					_	_		_				in buj	fer 1	_	_					_	_		
LANE A	00FF	FF00	00FF	FF00	PRBSO	PRBS1	PRBS2	$\triangleright\!$	$>\!\!\!\!>$	>	\geq	PRBS31	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
											Start t	o write											
							~ ~	~ .	~ .	~	in bu	ffer 2											
LANE B	FF00	00FF	FF00	PRBS0	PRBS1	PRBS2	\succ	>	>	\sim	PRBS31	BO	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Earliest arrival lane														Start t	o write								
										~ ~	~ >		< _	in bu	ffer 3								
LANE C	OOFF	FF00	OOFF	FF00	00FF	FF00	PRBS0	PRBS1	PRBS2		\sim	\sim	\sim	PRBS31	CO	C1	C2	C3	C4	C5	C6	C7	C8
															Start to	o write							
	5500	0055	5500	0055	5500	0055	5500	DRBSO	DRBS1	DRBS		\sim	\sim	\sim	DRBS31	D0	D1	D2	D2	D/	D5	D6	DZ
Latest arrival lane	rroo	UUFF	FFUU	UUFF	FFOO	UUFF	FFOU	Phose	FRUSI	FR032		\sim	\sim	~	FRUSSI	00	01	02	05	04	05	00	
Eutest univariance																							
D. (f																							
Buffer outputs																							
DATA LANE A	X	X	X	X	X	X	X	X	X	х	X	X	х	A0	A0	A0	A0	A0	A0	A1	A2	A3	A4
DATA LANE B	X	X	X	X	X	Х	Х	X	X	Х	X	X	B0	B0	B0	B0	B0	B0	B0	B1	B2	B3	B4
DATA LANE C	x	X	X	X	X	X	X	X	X	X	X	X	X	X	X	C0	C0	CO	CO	C1	C2	C3	C4
				-						-							-				_		
DATA LANE D	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	х	D0	D0	D0	D1	D2	D3	D4
																depe	nds on						
Inner medi	<i>(</i>) :• •															bujjer		·					
lanes_ready	(DIT-10)-DIL NO	ot on F	TFO en	ipty sig	gnaisj												4					
release data																i	aepena mpleme	is on ntation	Alian	ad date	rolog	cod	
																			JeanAu	uuu	rereus	icu -	

Figure 41: Multi-lanes synchronization time chart principle

9.2.3 **Deterministic latency**

9.2.3.1 Definition

The deterministic latency is the need for the data to propagate through a system with a constant delay from power cycle to power cycle, from reset to reset and from sync to sync, throughout a system's lifecycle. When an ADC transmits sampled data to a Logic Device (LD) through the serial interface, deterministic latency must ensure a fix delay between the parallel sample data generated by the ADC core and the parallel data received in the logic device.

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G - May 2023

Figure 42 – Deterministic latency principle

9.2.3.2 Requirements

- 1) SYNC pulse must be sampled by each ADC out of its metastable zone. Follow the SYNC flag procedure.
- Each serial lane must be synchronized.
- At the end of the ESIstream synchronization sequence, data are sent through the serial link.
- Data must be buffered on the receiver side to compensate all skews and variable latencies introduced by the serial interface implementation (for instance, elastic buffers) or process, voltage and temperature effects (PVT).
- 4) Data must be released from the output buffers at a deterministic delay compare to the SYNC pulse generation.
- All master clocks (LD Master CLK and ADC(s) Master CLK) must be synchronous and generated from the same clock reference (REF CLK).
- 6) The LD Master CLK frequency should be calculate using the formula below:

$$f_{LD master CLK} = \frac{f_{serial}}{DESER}$$

With fserial the frequency at which a bit is sent through the serial link. DESER the deserialization factor of the ESIstream RX IP (16, 32, 64...). DESER is a multiple of the ESIstream frame width: 16.

- 7) The SYNC pulse must be synchronous with all ADC(s) Master CLK.
- 8) The SYNC pulse must be generated from the LD Master CLK clock domain.
- 9) In the logic device, the SYNC pulse should trigger a counter (SYNC counter) defining a deterministic time base. When the counter reach its end value, the parallel data received and buffered in the output buffers are released.
 - The SYNC counter end value is determined by a training phase.
 - The training phase must be done only one time.

- The SYNC counter end value must be reloaded after each power-up or reset of the ADC and before sending the SYNC pulse.

Figure 43 – Single ADC deterministic latency principle

Figure 44 – Single ADC Deterministic latency chronogram

Depending on application requirements (sampling frequency, temperature range), fine delay adjustment may be needed on SYNC signal. Please contact your local FAE or Teledyne-e2v support at GRE-HOTLINE-BDC@Teledyne.com for solutions.

9.2.4 SYNC signals topologies

Two different possible topologies can be used to route SYNC signals, the star topology or the SYNC chaining topology.

EV12AQ600 / EV12AQ605

9.2.5 SYNC FLAG procedure

The following procedure explains how to manage the SYNC signal in order to avoid the metastable zone. The procedure suits for both topologies and for a given PCB layout.

The procedure must be done only one time. The configuration (SYNC_CFG[0] bits) must be saved. After a new power-up or a reset, the saved configuration must be loaded before sending a SYNC pulse.

9.2.6 Multi-devices synchronization

ESIstream protocol combined with SYNC signals capabilities allows simplifying the synchronization across a multichannel system.

For more information on SYNC chaining feature, refer to technical note: <u>SYNCHRONIZATION CHAINING</u>, <u>Simplifying Multi-channel Synchronization in Gigahertz Data Converters</u>.

The SYNC chaining feature helps to reduce complexity in challenging high performance multichannel sampling systems as phased array systems employing digital beam-forming techniques and MIMO equipment.

Although SYNC chaining greatly simplifies design of a synchronized multi-devices system, it is still possible to use the SYNC Star topology.

9.3 Interleaving performance improvement

To reduce interleaving spurs, level, gain, phase and offset mismatch between ADC cores must be corrected. There are 3 possibilities described in following table and chapters.

		Coin Dhage Offect cel	ibuation					
		Gain, Fnase, Offset Calibration						
	Calibra	ation sets	Interleaved spurs removed					
ADC input frequency	Factory settings ⁽⁵⁾	Customer settings ⁽³⁾	with FPGA post-					
	§9.3.1.1	§9.3.1.1.1	processing ⁽²⁾					
	Ŭ	U	§9.3.2					
Frequency range around factory settings at 100 MHz and 2230	Yes	Yes	Yes					
MHz								
Other fixed frequency range	Yes ⁽¹⁾	Yes	Yes					
Variable frequency range	No	Yes ⁽⁴⁾	Yes					

Interleaving performance optimization

⁽¹⁾ Possible with dedicated P/N. Please contact HOTLINE.

⁽²⁾ Valid on 85% of the Nyquist zone.

⁽³⁾ For temperature variation corrections, with interpolation feature, pre-settings must be defined.

⁽⁴⁾ Not recommended. Post processing algorithm development needed with possible latency to get optimized performance.

⁽⁵⁾ Optimized perf for IN0. Dedicated P/N needed otherwise.

9.3.1 Using calibration sets

9.3.1.1 Factory settings

4 factory calibration sets are available in OTP memory cells (2 for AQ605). They are optimized for IN0 and following conditions:

Calibration sets	Region of interest	Calibration frequency	Calibration temperature (Td)
CalSet0	800 MHz to 6GHz	2230 MHz	60 °C
CalSet1	800 MHz to 6GHz	2230 MHz	100 °C
CalSet2	DC to 800 MHz	100 MHz	60 °C
CalSet3	DC to 800 MHz	100 MHz	100 °C

Calibration sets description for AQ600

Calibration sets description for AQ605

Calibration sets	Region of interest	Calibration frequency	Calibration temperature (Td)
CalSet0	800 MHz to 6GHz	2230 MHz	55 °C
CalSet2	DC to 800 MHz	100 MHz	55 °C

It is also possible to use factory calibration sets with other calibration frequencies. In case of interest, contact GRE-HOTLINE-BDC@TELEDYNE.COM.

To select one calibration set, following sequence must be applied:

Step #1: Load all OTPs values in SPI registers: Write in OTP LOADING register (-). This is already done with the start-up procedure (see §6).

Step #2: Select the desired calibration set: Use CAL_SET_SEL register (-)

Calibration sets	Core A	Core B	Core C	Core D
CalSet0	A_SET0_OFFSET_CAL	B_SET0_OFFSET_CAL	C_SET0_OFFSET_CAL	D_SET0_OFFSET_CAL
	A_SET0_GAIN_CAL	B_SET0_GAIN_CAL	C_SET0_GAIN_CAL	D_SET0_GAIN_CAL
	A_SET0_PHASE_CAL	B_SET0_PHASE_CAL	C_SET0_PHASE_CAL	D_SET0_PHASE_CAL

CalSetx (x=0, 1, 2, 3) registers mapping (see -, -, -)

EV12AQ600 / EV12AQ605

Quad 12-bit 1.6 GSps ADC

CalSet1 (1)	A_SET1_OFFSET_CAL	B_SET1_OFFSET_CAL	C_SET1_OFFSET_CAL	D_SET1_OFFSET_CAL
	A_SET1_GAIN_CAL	B_SET1_GAIN_CAL	C_SET1_GAIN_CAL	D_SET1_GAIN_CAL
	A_SET1_PHASE_CAL	B_SET1_PHASE_CAL	C_SET1_PHASE_CAL	D_SET1_PHASE_CAL
CalSet2	A_SET2_OFFSET_CAL	B_SET2_OFFSET_CAL	C_SET2_OFFSET_CAL	D_SET2_OFFSET_CAL
	A_SET2_GAIN_CAL	B_SET2_GAIN_CAL	C_SET2_GAIN_CAL	D_SET2_GAIN_CAL
	A_SET2_PHASE_CAL	B_SET2_PHASE_CAL	C_SET2_PHASE_CAL	D_SET2_PHASE_CAL
CalSet3 (1)	A_SET3_OFFSET_CAL	B_SET3_OFFSET_CAL	C_SET3_OFFSET_CAL	D_SET3_OFFSET_CAL
	A_SET3_GAIN_CAL	B_SET3_GAIN_CAL	C_SET3_GAIN_CAL	D_SET3_GAIN_CAL
	A_SET3_PHASE_CAL	B_SET3_PHASE_CAL	C_SET3_PHASE_CAL	D_SET3_PHASE_CAL

Notes:

1. Not available for AQ605

9.3.1.1.1 Temperature interpolation

This feature is available for AQ600 only.

To further enhance performance and compensate the roll-off effect with temperature, the user can interpolate the GAIN, PHASE and OFFSET registers according to the 2 temperature given calibration sets (CalSet0/CalSet1 or CalSet2/CalSet3). A simple linear interpolation will lead to new register values that will improve performance. The following equation applies:

$$Reg \ value(T) = \frac{Reg \ value(100\ ^\circ C) - Reg \ value(60\ ^\circ C)}{100\ ^\circ C - 60\ ^\circ C} \times T + Reg \ value(60\ ^\circ C) - \frac{Reg \ value(100\ ^\circ C) - Reg \ value(60\ ^\circ C)}{100\ ^\circ C - 60\ ^\circ C} \times 60\ ^\circ C$$

The original register values (@60 °C and @100 °C respectively) are to be read in the appropriate SPI register (see -). Once the derived register value is found, the user shall write it (through SPI) in place of the previous calibration set used.

Example: the user is working at 3GHz with CalSet1 (Fcal=2230 MHz, Tcal=100 °C) loaded into SPI, the current device temperature drops to 40°C and the system can adjust the registers to match this new temperature.

Register type	ADC Core	Value @60 °C	Value @100 °C	Interpolated value @40 °C	Target address (SPI)	
	A	76D	774	76A	0x0125	
CAIN	В	714	719	712	0x0325	
GAIN	С	88B	886	88E	0x0525	
	D	8E3	8DE	8E6	0x0725	
	A	0E5	0F3	DE	0x0126	
	В	12D	125	131	0x0326	
FRASE	С	0DE	0E3	DC	0x0526	
	D	0E4	0ED	E0	0x0726	
	А	0DE	0E3	DC	0x0127	
OFFERT	В	124	121	126	0x0327	
OFFSEI	С	120	11B	123	0x0527	
	D	125	11E	129	0x0727	

Example of Interleaving registers interpolation

See §10.10 for dynamic performance versus temperature.

9.3.1.2 **Customer settings**

Based on specific conditions of use, it is also possible to define phase, gain and offset values (see -, - and -) using the methodology described in §9.3.1.2.1 and §9.3.1.2.2.

9.3.1.2.1 Offset interleaving calibration

To set offset, DC value should be extracted with high precision to quantify offset unbalance between cores. Offset adjust 9-bit DAC should be set at the right value to decrease DC offset mismatch.

Protocol:

- Use single core output data with or without input signal
- Calculate output data average for each core DCcoreX (X= A, B, C, D)
- Apply DC correction equal to:

$$DC_{correction}X = \frac{DC_{core}X - DC_{ref}}{DAC_LSB_{DCcorex}}$$

With:

- DC_{correction}X = DAC code to compensate corex DC offset (X = A, B, C, D)
- DC_{core}X = DC offset at coreX output (X = A, B, C, D)

- DC_{ref} = reference value to align cores DC offset. It can be set to 2048 or to one core offset value
- $DAC_{LSB_{DC corex}}$ = core X DC offset DAC calibration LSB (X = A, B, C, D)

CoreX DC offset DAC calibration LSB is determined by measuring corex DC offset at maximum and minimum correction.

$$LSB_{DCcorex} = \frac{DC_{core}X@maxcode - DC_{core}X@mincode}{maxcode - mincode - 1}$$

With:

- DC_{core}X@maxcode = core X DC offset at maximum DC offset correction code
- *DC_{core}X@mincode* = core X DC offset at minimum DC offset correction code

mincode = 0

9.3.1.2.2 Gain and phase interleaving calibration

By using FFT on each core output, gain and phase of each core can be estimated at input frequency Fin of interest. Correction is calculated as follow:

$$Gain_{correction} X = \frac{Gain_X - Gain_{ref}}{LSB_{Gain X}}$$

$$Phase_{correction}X = \frac{Phase_X - Phase_{ref}}{LSB_{Phase X} * (360.F_{in})}$$

With:

Core X : core to be calibrated (X = A, B, C, D): corex gain in dB Gainy : core gain reference in dB *Gain*_{ref} $Phase_{x}$: corex phase in degree *Phase*_{ref} : core phase reference in degree : frequency of interest F_{in}

Gain and phase measurement accuracy should be negligible regarding ADC LSB.
9.3.2 Using ADX4 FPGA IP

ADX4 IP improves cancellation of time interleaving mismatch effects like gain, phase and DC-offset by real time post processing treatment in the FPGA at any temperature, signal input frequency and ADC sampling rate.

ADX4 IP improves achievable dynamic performances like SFDR and ENOB are described in the "ILG recal at Fin" column of the table and section "Dynamic Performance - 1-channel mode – 6.4 GSps".

A detailed application note is available on the product website

10 CHARACTERIZATION RESULTS

10.1 Power consumption

10.1.1 Versus Power supply voltage

IccA (mA)

Power dissipation (W)

Figure 47: Current consumption and power dissipation versus supply voltage and standby mode

10.1.2 Versus Temperature

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G – May 2023 page 109 Teledyne e2v Semiconductors SAS 2023

Quad 12-bit 1.6 GSps ADC

Figure 48: Current consumption and power dissipation versus temperature and standby mode

10.2 Analog Bandwidth and Band flatness

Figure 49: Nominal Bandwidth

Figure 50: Extended Bandwidth

10.3 Cross-talk

Figure 53: Cross-talk between serial outputs

10.4 VSWR

Figure 55: VSWR on serial output

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023

10.5 INL

INL at Analog input frequency = 98 MHz - Pout = -1 dBFS

Figure 56: INL - 4-channel mode – 1.6 GSps

Figure 57: INL - 2-channel mode – 3.2 GSps

Figure 58: INL - 1-channel mode – 6.4 GSps

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G – May 2023 page 113 Teledyne e2v Semiconductors SAS 2023

10.6 DNL

Figure 59: DNL - 4-channel mode – 1.6 GSps

Figure 60: DNL - 2-channel mode – 3.2 GSps

Figure 61: DNL - 1-channel mode – 6.4 GSps

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 114 DS 60S 218366 rev G – May 2023

10.7 Dynamic Performances versus Analog input frequencies

10.7.1 **4-channel mode – 1.6 GSps**

Figure 62: Performance vs Analog input frequencies - 4-channel mode – 1.6 GSps

41

39

37

35

-

-set0 - -3

←set0 - -1

5578

10.7.2 2-channel mode- 3.2 GSps

6,5

-set0 - -1

Figure 63: Performance vs Analog input frequencies - 2-channel mode – 3.2 GSps - Calibration set: CalSet0 -

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 116 DS 60S 218366 rev G - May 2023

ENOB vs Fin

SINAD vs Fin

10.7.3 1-channel mode- 6.4 GSps

Figure 65: Performance vs Analog input frequencies - 1-channel mode – 6.4 GSps - Calibration set: CalSet0 -

Figure 66: Performance vs Analog input frequencies - 1-channel mode – 6.4 GSps - Calibration set: CalSet2 -

10.7.4 Spectra

Figure 67: Spectra at Analog input frequency = 98 MHz, Pout = -1 dBFS

Figure 68: Spectra at Analog input frequency end of 1st Nyquist zone (mode dependent). Pout = -1 dBFS.

4-channel mode – 1.6 GSps – Fin folded

from 8th Nyquist zone

2-channel mode – 3.2 GSps – Fin folded from 4th Nyquist zone

1-channel mode – 6.4 GSps – Fin folded from 2nd Nyquist zone

Figure 69: Spectra at Analog input frequency = 6378 MHz. Pout = -12 dBFS

Simultaneous sampling and averaging – 1.6 GSps

Figure 70: Spectra at Analog input frequency = 98 MHz, Pout = -1 dBFS. Simultaneous sampling and averaging (based on 4-channel mode)

10.8 Performance versus Clock Input Frequency

10.8.1 4-channel mode – 1.6 GSps

Figure 71: Performance vs Fclock - 4-channel mode – 1.6 GSps

10.8.2 1-channel mode – 6.4 GSps

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G - May 2023 Teledyne e2v Semiconductors SAS 2023 page 123

Figure 72: Performance vs Fclock - 1-channel mode – 6.4 GSps

10.9 Performance versus Clock Input Power

10.9.1 1-channel mode – 6.4 GSps

10.10 Dynamic Performance versus Temperature

10.10.1 4-channel mode - 1.6 GSps

SINAD vs temperature

10.10.2 2-channel mode - 3.2 GSps

Figure 76: Performance vs Temperature - Fin= 2378 MHz - Pout= -1 dBFS Note : Calibration set Set1 and interpolation only available on AQ600 device

10.10.3 1-channel mode – 6.4 GSps

44.0

42.0 40.0

-30

SINAD vs temperature

118

60

Tdiode (°C)

ENOB vs temperature

118

60

Tdiode (°C)

6.5

6.0

-30

10.11 Dynamic Performance versus Power supplies

10.11.1 4-channel mode – 1.6 GSps

THD vs power supplies

SNR vs power supplies

SINAD vs power supplies

ENOB vs power supplies

10.11.2 2-channel mode – 3.2 GSps

Figure 80: Performance vs Power Supply - Pout= -1 dBFS - Calibration set: CalSet0 -

) OF 45.0

40.0

35.0

10.11.3 1-channel mode - 6.4 GSps

ENOB vs power supplies

ТҮР

Power supplies

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. DS 60S 218366 rev G - May 2023 page 133

Hin (MHI)

-98

-2378

3178

5578

MAX

10.12 IMD3 – 3rd order InterModulation Distortion

10.12.1 Analog Input frequency 100 MHz - 1-channel mode - 6.4 GSps

Figure 82: IMD3 – Analog Input frequency 100 MHz – Pout = -7 dBFS

Figure 83: IMD3 – Analog Input frequency 3100 MHz – Pout = -9 dBFS

10.12.3 Analog Input frequency 5900 MHz - 1-channel mode - 6.4 GSps

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers. Teledyne e2v Semiconductors SAS 2023 page 134 DS 60S 218366 rev G - May 2023

10.13 NPR - Noise Power Ratio

10.13.1 Mono core NPR performance in nominal conditions

11 AQ600 ORDERING INFORMATION

-

-

Part Number	Temperature Range	Screening Level	RoHS compliance	Comments
XDCHAIN-323GH	Ambient	Prototype		Daisy Chain Refer to specification SP 31S 217230

Evaluation kit

Part Number	Temperature Range	Screening Level	RoHS compliance	Comments
EV12AQ600-ADX4-EVM	Ambient	Prototype	RoHS	
EV12AQ600-2ADC-EVM	Ambient	Prototype	RoHS	

- Ordering codes

Part Number	Temperature Range	Screening Level	RoHS compliance	Comments
EV12AQ600ACUH	Tc 0°C, Tj +90°C	Standard	RoHS	
EV12AQ600AVUH	Tc -40°C, Tj +110°C	Standard	RoHS	
EV12AQ600AMUH	Tc -55°C, Tj +125°C	Standard	RoHS	
EV12AQ600AMGH	Tc -55°C, Tj +125°C	Standard	Non RoHS	
EV12AQ600ACUH-ADX4	Tc 0°C, Tj +90°C	Standard	RoHS	With ADX4 license
EV12AQ600AVUH-ADX4	Tc -40°C, Tj +110°C	Standard	RoHS	With ADX4 license
EV12AQ600AMUH-ADX4	Tc -55°C, Tj +125°C	Standard	RoHS	With ADX4 license
EV12AQ600AMGH-ADX4	Tc -55°C, Tj +125°C	Standard	Non RoHS	With ADX4 license

Engineering, Engineering Qualification and Flight Models ordering codes

Part Number	Temperature Range	Screening Level	Entented for	RoHS compliance	Comments
EV12AQ600AMGHD/T	Tc -55°C, Tj +125°C	Standard +168h burn-in	-	Non RoHS	
EV12AQ600AMGHEQM	Tc -55°C, Tj +125°C	Engineering Qualification Model	Qualification	Non RoHS	
EV12AQ600AMGH-Y	Tc -55°C, Tj +125°C	QML-Y compliant	Space flight	Non RoHS	
EV12AQ600AMGH9NB1	Tc -55°C, Tj +125°C	ESCC9000 compliant	Space flight	Non RoHS	
EV12AQ600AMGHD/T-ADX4	Tc -55°C, Tj +125°C	Standard +168h burn-in	-	Non RoHS	With ADX4 license
EV12AQ600AMGHEQM-ADX4	Tc -55°C, Tj +125°C	Engineering Qualification Model	Qualification	Non RoHS	With ADX4 license
EV12AQ600AMGH-Y-ADX4	Tc -55°C, Tj +125°C	QML-Y compliant	Space flight	Non RoHS	With ADX4 license

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers.

Quad 12-bit 1.6 GSps ADC				LVIZA	
EV12AQ600AMGH9NB1-ADX4	Tc -55°C, Tj +125°C	ESCC9000 compliant	Space flight	Non RoHS	With ADX4 license

12 AQ605 ORDERING INFORMATION

- Evaluation kit					
Part Number	Temperature Range	Screening Level	RoHS compliance	Comments	
EV12AQ605-ADX4-EVM	Ambient	Prototype	RoHS		

Part Number	Temperature Range	Screening Level	RoHS compliance	Comments
EV12AQ605ACUH	Tc 0°C, Tj +90°C	Standard	RoHS	
EV12AQ605AVUH	Tc -40°C, Tj +110°C	Standard	RoHS	
EV12AQ605ACUH-ADX4	Tc 0°C, Tj +90°C	Standard	RoHS	With ADX4 license
EV12AQ605AVUH-ADX4	Tc -40°C, Tj +110°C	Standard	RoHS	With ADX4 license

13 REVISION HISTORY

Issue	Date	Comments
А	24/10/2019	Creation (replace EV12AQ600 datasheet)
		Datasneet for EV12AQ600 and EV12AQ605 products
В	20/02/2020	EV12AQ600AMGH order entry opened
		Add EV12AQ600AMGHEQM P/N
		Electrical Characteristics - updated
С	17/06/2020	- Deterministic latency section added
		- "High Speed Serial Interface" & "Deterministic latency" sections updated
		- EV12AQ605ACSH & EV12AQ605AVSH order entry opened
		- Switching characteristics table updated
		- New legal disclaimer at the end of each page
D	18/03/2021	- SYNC Vin and SYNCO Vout limit modification
		 EXTRA_SEE_PROTECT register updated description
		- lilc, lihc updated
		- Additional performance for AQ605 device in 4-channel and 1-channel mode
Е	08/04/2021	- Clock interleaving (2-channel mode) correction
		- High Speed Serial Interface section updated
F	10/05/2022	- P/N with ADX4 FPGA IP added (for interleaving spurs removed)
		- Interleaving performance improvement section updated
G	24/05/2023	 Introduction of full RoHS parts with SnAg bumps (UH code), in replacement of RoHS parts with SnPb bumps (SH code)

IMPORTANT NOTICE

Teledyne e2v provides technical and reliability data, including datasheets, design resources, application and other recommendations ("Resources") "as is" at the date of its disclosure. All Teledyne e2v Resources are subject to change without notice to improve reliability, function or design, or otherwise.

These Resources are intended for skilled developers designing with Teledyne e2v products. You are solely responsible for a. selecting the appropriate Teledyne e2v products for your application, b. designing, validating and testing your application, and c. ensuring your application meets applicable standards, and any other safety, security, or other requirements.

Teledyne e2v makes no warranty, representation or guarantee regarding the suitability of these Resources for any particular purpose, or the continuing production of any of its products. Teledyne e2v grants you permission to use these Resources only for the development of an application that uses the Teledyne e2v products described in the Resource. Other reproduction and display of these Resources are not permitted. No license, express or implied, to Teledyne e2vintellectual property right or to any third party intellectual property right is granted by this document or by the conduct of Teledyne e2v.

To the maximum extent permitted by law, Teledyne e2v disclaims (i) any and all liability for any errors, inaccuracies or incompleteness contained in these Resources, or arising out of the application of or use of these Resources, and (ii) any and all express or implied warranties, including those of merchantability, fitness for a particular purpose or non-infringement of intellectual property rights. You shall fully indemnify Teledyne e2v against, any claims, damages, costs, losses, and liabilities arising out of your application of or use of these Resources.

Teledyne e2v's acceptance of any products purchase orders is expressly conditioned upon your assent to Teledyne e2v's General Terms and Conditions of Sale which are stated in any Teledyne e2v's offer and can be found at www.teledyne-e2v.com/about-us/terms-and-conditions/.

The provision of these Resources by Teledyne e2v does not expand or otherwise alter Teledyne e2v's applicable warranties or warranty disclaimers for Teledyne e2v products.

Mailing Address: Teledyne e2v Semiconductors SAS, Avenue de Rochepleine, 38120 Saint Egrève, France. Telephone: +33 4 76 58 30 00 e-mail: GRE-HOTLINE-BDC@Teledyne.com Copyright © 2022, Teledyne e2v Semiconductors SAS