# e2v

## AT84CS001 10-bit 2.2 Gsps 1:4 DMUX

## Datasheet

#### Features

- High-speed ADC Family Companion Chip
- Selectable 1:2 or 1:4 DMUX Ratio
- Power Consumption: 2.7W
- LVDS Compatible Differential Data and Clock Inputs (100 $\Omega$  Terminated)
- LVDS Compatible Differential Data and Data Ready Outputs
- Staggered or Simultaneous Data Outputs
  - 11<sup>th</sup> Bit = Ports A, B, C and D Clock in Staggered Mode
- Selectable Active Edge for Input and Output Clocks:
  - Only Rising: CLK and DR Mode
  - Rising and Falling: CLK/2 and DR/2 Mode
- Fine Tuning of Input Clock Path Delay
  - Compensation of External Data and Clock Path Misalignment and Skews
  - Once Tuned, Setting is Valid over Full Operating Frequency and Over Full Specified Temperature Range
- Additional 11<sup>th</sup> Bit (Example: for Out-of-range Bit)
- Built-in Self Test (BIST)
- Stand-alone Tunable Delay Cell
- Power Supplies: V<sub>CCD</sub> = 3.3V (Digital), V<sub>PLUSD</sub> = 2.5V (Outputs)
- Power Consumption Reduction Mode: 1.15W
- EBGA240 Package

## Screening

- Temperature Range:
  - - 40 °C < T<sub>C</sub>; T<sub>J</sub> < 110 °C (Industrial Grade)

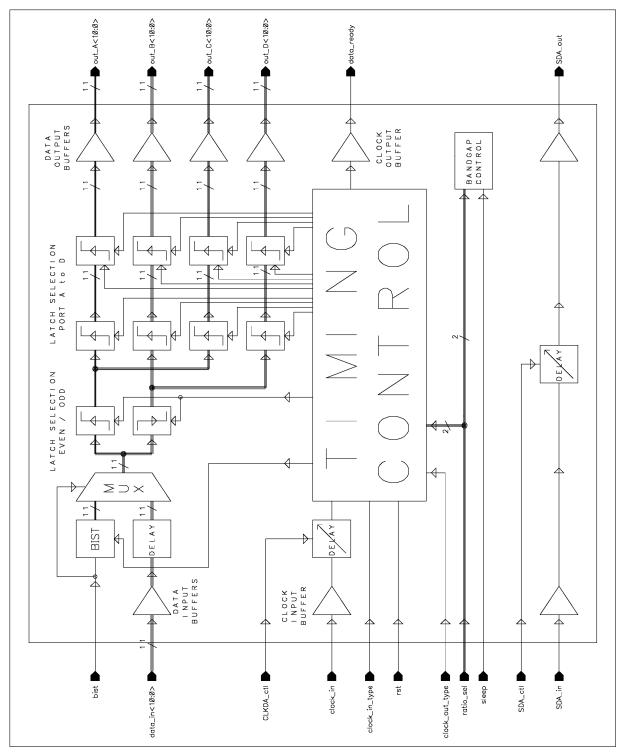
## Applications

This DMUX enables users to process high-speed output data streams from fast analog-to-digital converters down to standard FPGA processor speed.

## Description

The AT84CS001 is a monolithic high-speed demultiplexer, used to lower a 10-bit data stream of up to 2.2 Gsps guaranteed rate by a selectable 4 or 2 ratio (a 1:8 ratio might be achieved by interleaving two DMUXes).

The DMUX is a companion chip designed to fit perfectly with all of e2v's high-speed ADCs and is capable of tracking the ADC's output sampling rate over all operating frequency and temperature ranges.


Thanks to its LVDS buffers, this DMUX can easily be interfaced with standard high-speed FPGAs (100 $\Omega$  differentially terminated).

The AT84CS001 has the same footprint as e2v's TS81102G0 DMUX, with a very similar pinout. Minimum re-design efforts are required to use this low-power DMUX. An application note "Migration from AT84AS008 to AT84AS008B" reference 5413, is available to assist in migrating from the TS81102G0 to the AT84CS001.



## 1. Block Diagram





#### 2. Overview

The AT84CS001 is a monolithic high-speed demultiplexer (DMUX) using high-speed e2v technology.

It enables the user to lower a 10-bit stream of 2.2 Gsps maximum by a factor of two or four. One can obtain a 1:8 ratio by using two interleaved AT84CS001 devices. The maximum input data rate is 2.2 Gsps in 1:4 ratio and 1.8 Gsps in 1:2 ratio.

The AT84CS001 DMUX is capable of processing an 11-bit data flow. The additional 11<sup>th</sup> bit (IOR, IORN) might be connected for example to the out-of-range bit of a 10-bit ADC.

The input and output clocks as well as the input and output data are LVDS compatible. Digital inputs are  $100\Omega$  differentially terminated on chip. Digital output buffers shall be terminated by a  $100\Omega$  differential ASIC load.

The improved architecture of the DMUX facilitates interfacing with high-speed ADCs operating at up to 2.2 Gsps. A tunable delay cell is integrated in serial with the clock input: it can be used to tune the delay between the data and clock paths namely for high speed rates and in the case of misalignment or skews between the external clock path and the data path. The delay is controlled by means of the CLKDACTRL analog control input. The tunable delay ranges from -250 ps to 250 ps for CLKDACTRL varying from V<sub>CCD</sub>/2 to (2 × V<sub>CCD</sub>)/3.

Two modes can be selected for the clock input (CLK and CLK/2) and the clock output (DR and DR/2):

- CLK and DR mode: Only the rising edges of the input (CLK,CLKN) and output (DR, DRN) clocks are active. The input (or output) clock rate remains the same as the input or output data rate.
- CLK/2 and DR/2 mode: Both the rising and falling edges of the input (CLK,CLKN) and output (DR, DRN) clocks are active. The input (or output) clock rate is half the input or output data rate.

The data outputs can be received at the DMUX output in two different modes:

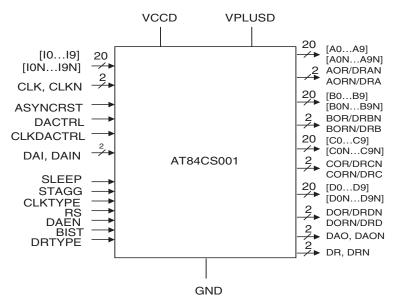
- Staggered: even and odd bits are output with half a data period delay
- Simultaneous: even and odd bits are output at the same time

The AT84CS001 DMUX is started by the ASYNCRST control input that acts as a master asynchronous reset for the device. Once reset, there is no loss of synchronization over an indefinite time period, therefore no additional incoming synchronous reset signal is required.

The power consumption of the AT84CS001 is 2.7W and can be reduced by approximately 60% of its nominal value by means of the SLEEP control input.

A standalone delay cell is provided. It features a typical 550 ps tuning range ( $\pm$  275 ps around the center value of DACTRL analog control input).

A Built-in Self Test (BIST) is implemented for rapid debugging of the DMUX.


The AT84CS001 DMUX is a companion chip designed to fit perfectly with all of e2v's high-speed ADCs.

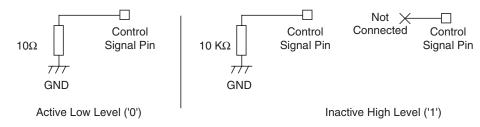
## 3. Description of Main Functions

 Table 3-1.
 Description of Main Functions

| Name                  | Function                                                              | Name                  | Function                                                              |  |
|-----------------------|-----------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|--|
| V <sub>CCD</sub>      | Digital 3.3V power supply                                             |                       |                                                                       |  |
| V <sub>PLUSD</sub>    | Output 2.5V power supply                                              | — D0, D0ND9, D9N      | Output data port D                                                    |  |
| GND                   | Ground                                                                | DOR/DRDN,<br>DORN/DRD | Additional output bit port D or port D output clock in staggered mode |  |
| CLK, CLKN             | Input clock signals                                                   | DAO, DAON             | Output signals for stand-alone delay cell                             |  |
|                       |                                                                       | DAI, DAIN             | Input signals for stand-alone delay cell                              |  |
| 10, 10N19, 19N        | Input data                                                            | DACTRL                | Control signal for standalone delay cell                              |  |
| IOR, IORN             | Additional input bit                                                  | CLKDACTRL             | Control signal for clock delay cell                                   |  |
| DR/DRN                | Output clock signals                                                  | DAEN                  | Enable signal for standalone delay cell                               |  |
| A0, A0NA9, A9N        | Output data port A                                                    | ASYNCRST              | Asynchronous reset signal                                             |  |
|                       |                                                                       | SLEEP                 | Sleep mode selection signal                                           |  |
| AOR/DRAN,<br>AORN/DRA | Additional output bit port A or port A output clock in staggered mode | RS                    | DMUX ratio selection signal                                           |  |
|                       |                                                                       | CLKTYPE               | Input clock type selection signal                                     |  |
| B0, B0NB9, B9N        | Output data port B                                                    | DRTYPE                | Output clock type selection signal                                    |  |
| BOR/DRBN,<br>BORN/DRB | Additional output bit port B or port B output clock in staggered mode | STAGG                 | Staggered mode selection for data outputs                             |  |
| C0, C0NC9, C9N        | Output data port C                                                    | BIST                  | Built-in Self Test enable                                             |  |
| COR/DRCN,<br>CORN/DRC | Additional output bit port C or port C output clock in staggered mode |                       |                                                                       |  |

Figure 3-1. Device Pinout




#### 3.1 Control Signal Settings

The ASYNCRST, SLEEP, DAEN, STAGG, BIST, RS, CLKTYPE and DRTYPE control signals use the same static input buffer.

ASYNCRST is activated on logic HIGH (tied/switched to  $V_{CCD}$  = 3.3V, or 10 k $\Omega$  to ground, or left floating), and deactivated on logic LOW (grounded).

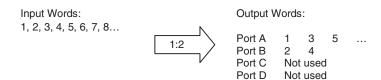
SLEEP, DAEN, STAGG, BIST are activated on logic LOW (10 $\Omega$  grounded), and deactivated on logic HIGH (10 k $\Omega$  to ground, or tied to V<sub>CCD</sub> = 3.3V, or left floating).

#### Figure 3-2. Control Signal Settings



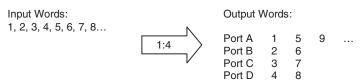
| Function | Logic Level | Electrical Level        | Description                                                             |
|----------|-------------|-------------------------|-------------------------------------------------------------------------|
|          | 0           | 10 $\Omega$ to ground   | BIST                                                                    |
| BIST     |             | 10 k $\Omega$ to ground |                                                                         |
| 1        | 1           | N/C                     | Normal conversion                                                       |
| 0        |             | 10 $\Omega$ to ground   | Power reduction mode (the outputs are fixed at an arbitrary LVDS level) |
| SLEEP    | 4           | 10 k $\Omega$ to ground | Normal conversion                                                       |
|          | 1           | N/C                     | Normal conversion                                                       |
|          | 0           | 10 $\Omega$ to ground   | Staggered mode                                                          |
| STAGG    | 4           | 10 k $\Omega$ to ground |                                                                         |
|          | 1           | N/C                     | Simultaneous mode                                                       |
| 0        |             | 10 $\Omega$ to ground   | Standalone delay adjust activated                                       |
| DAEN     |             | 10 k $\Omega$ to ground |                                                                         |
|          | 1           | N/C                     | Standalone delay adjust disabled                                        |
|          | 0           | 10 $\Omega$ to ground   | 1:2 ratio                                                               |
| RS       |             | 10 k $\Omega$ to ground |                                                                         |
|          | 1           | N/C                     | 1:4 ratio                                                               |
|          | 0           | 10 $\Omega$ to ground   | CLK mode                                                                |
| CLKTYPE  |             | 10 k $\Omega$ to ground |                                                                         |
|          | 1           | N/C                     | CLK/2 mode                                                              |
| 0        |             | 10 $\Omega$ to ground   | DR/2 mode                                                               |
| DRTYPE   | 4           | 10 k $\Omega$ to ground | DD mode                                                                 |
|          | 1           | N/C                     | DR mode                                                                 |

 Table 3-2.
 Summary of DMUX Mode Settings


#### 3.2 Programmable DMUX Ratio

The demultiplexer ratio is programmable through the RS ratio selection signal:

| Table 3-3. | DMUX Ratio Selection Settings |
|------------|-------------------------------|
|------------|-------------------------------|


| RS | DMUX Ratio |
|----|------------|
| 0  | 1:2        |
| 1  | 1:4        |

#### Figure 3-3. DMUX in 1:2 Ratio



Note: Ports C & D data have undetermined level. They can be left unconnected.

Figure 3-4. DMUX in 1:4 Ratio



#### 3.3 Additional Bit (IOR,IORN)

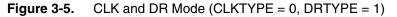
When a signal is applied on IOR and IORN, the *additional bit* is activated. It can be used to process the out-of-range bit from the ADC, in which case the DMUX features an 11-bit input/output data stream.

IOR, IORN is demultiplexed by the selected DMUX ratio:

- In 1:4 ratio, AOR/DRAN, AORN/DRA, BOR/DRBN, BORN/DRB, COR/DRCN, CORN/DRC and DOR/DRDN, DORN/DRD output this signal at a quarter of its initial speed.
- In 1:2 ratio, AOR/DRAN, AORN/DRA and BOR/DRBN, BORN/DRB output this signal at half its initial speed.
- Note: In staggered output mode:

(AORN/DRA, AOR/DRAN), (BORN/DRB, BOR/DRBN), (CORN/DRC, COR/DRCN) and (DORN/DRD, DOR/DRDN) are used as the Data Ready signal (output clock) for each port. In this mode the additional bit is disabled.

#### 3.4 Clock Type Selection CLKTYPE and DRTYPE


Two modes for the input and output clock type can be selected by way of the CLKTYPE and DRTYPE single-ended digital inputs.

For correct logic 1 or 0 settings, please refer to "Control Signal Settings" on page 5.

- When CLKTYPE is at logic *0* and DRTYPE is at logic *1*, the DMUX is set to CLK and DR modes for both the input and output clocks only the rising edges of the input and output clocks are active and the input and output clock rates are the same as the input and output data rate.
- When CLKTYPE is at logic 1 and DRTYPE is at logic 0, the CLK/2 and DR/2 modes are activated for both the input and output clocks, both the rising and falling edges of the input and output clocks are active and the input and output clock rates are half the input and output data rate.

When CLKTYPE is left floating, the default (recommended) mode is selected (CLK/2).

- Notes: 1. CLK or CLK/2 and DR or DR/2 modes can be indifferently combined together (example: CLK/2 for the input and DR for the output).
  - 2. The preferred (and recommended) mode is CLK/2 together with DR/2.



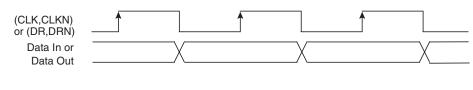
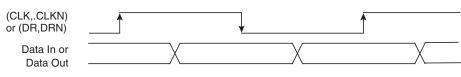




Figure 3-6. CLK/2 and DR/2 Mode (CLKTYPE = 1, DRTYPE = 0)



Note: In Figure 3-5 and Figure 3-6 above, the CLK and DR signals are not on the same time scale. In 1:4 DMUX ratio, the DR and data-out frequencies are equal to one quarter of the CLK and data-in frequencies.

 Table 3-4.
 Logical Settings of the DMUX Input Clock Type Selection

| CLKTYPE | DMUX Input Clock Type |  |
|---------|-----------------------|--|
| 0       | CLK                   |  |
| 1       | CLK/2                 |  |

 Table 3-5.
 Logical Settings of the DMUX Output Clock Type Selection

| DRTYPE | DMUX Output Clock Type |  |
|--------|------------------------|--|
| 1      | DR                     |  |
| 0      | DR/2                   |  |

#### 3.5 Output Mode (STAGG)

Two output modes are provided:

- Staggered: the data packets are output one after the other
- Simultaneous: all the data packets are output at the same time

In staggered mode, the output clock for each port is provided by the DRA, DRAN, DRB, DRBN, DRC, DRCN and DRD, DRDN signals, which correspond to AORN, AOR, BRON, BOR, CORN, COR, DORN and DOR respectively.

The Simultaneous mode is the default mode (STAGG left floating or at logic 1). The Staggered mode is activated through the STAGG input (active low level).

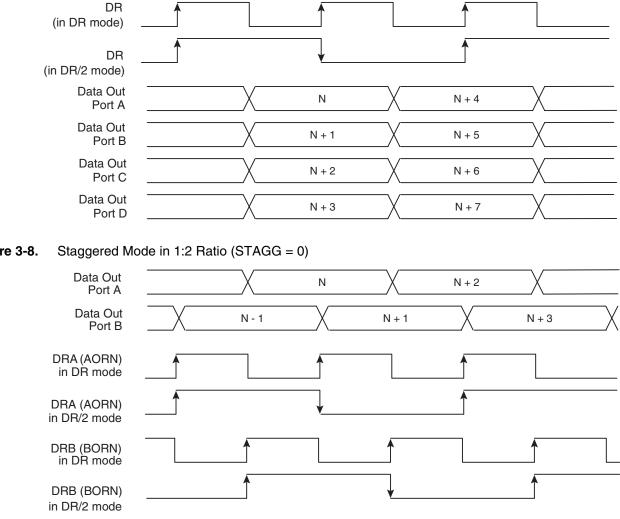
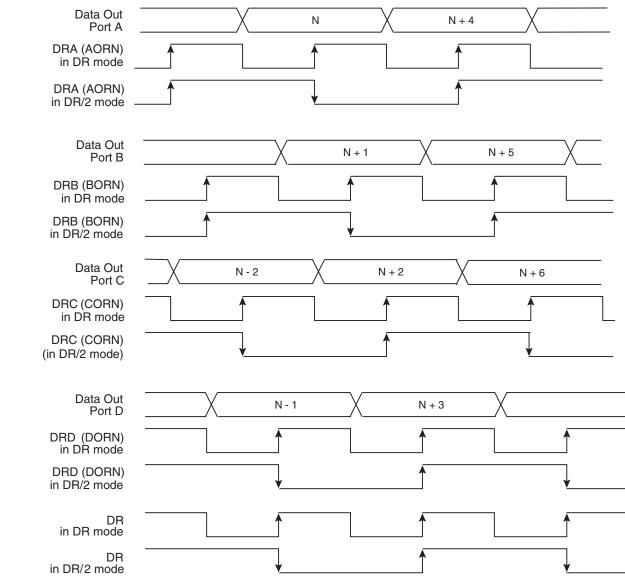



Figure 3-7. Simultaneous Mode in 1:4 Ratio (STAGG = 1)


Figure 3-8.

DR

DR

(in DR mode)

(in DR/2 mode)



#### Figure 3-9. Staggered Mode in 1:4 Ratio (STAGG = 0)

#### 3.6 Asynchronous Reset (ASYNCRST)

The ASYNCRST asynchronous reset input is required to start/initialize the device, and acts as master reset of the DMUX.

ASYNCRST is activated on logic HIGH (tied/switched to  $V_{CCD} = 3.3V$ , or 10 K $\Omega$  to ground, or left floating), and deactivated on logic LOW (grounded).

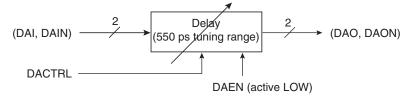
During the asynchronous reset, the DMUX' differential clock input (CLK, CLKN) should be stopped at low level (state in which e2v's single ADC Data Ready signals are when the ADC is in reset mode).

The ASYNCRST maximum signal frequency should not exceed 200 MHz. The ASYNCRST pulse should last at least 1 ns. For ASYNCRST to CLK timing see Figure 4-1 on page 20.

#### 3.7 Power Reduction Mode (SLEEP)

The power reduction mode saves up to 60% of power consumption. In this mode, the DMUX delivers an arbitrary digital output pattern with LVDS logic states (no toggling).

The power reduction mode is enabled by the SLEEP input. SLEEP is activated on logic LOW (grounded), and deactivated on logic HIGH (10 K $\Omega$  to Ground, or tied to V<sub>CCD</sub> = 3.3V, or left floating).


#### 3.8 Standalone Delay Cell (DAI, DAIN) (DAO, DAON)

A standalone tunable delay cell is provided. The delay line is controlled via the DACTRL analog control input. The tuning range is about 550 ps for DACTRL varying from  $V_{CCD}$  / 3 to  $(2 \times V_{CCD})$ / 3.

The (DAI, DAIN) and (DAO, DAON) are LVDS compatible input and output respectively. The Standalone Delay Cell is enabled by the DAEN input.

DAEN is activated on Logic Low (Grounded), and deactivated on Logic High (10 K $\Omega$  to ground, or tied to V<sub>CCD</sub> = 3.3V, or left floating).

Figure 3-10. Block Diagram of the Standalone Delay Cell



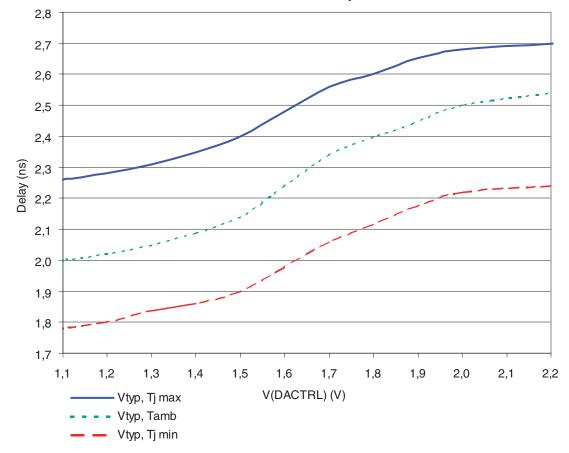



Figure 3-11. Transfer Characteristics of the Standalone Delay Cell

The tuning range is not constant over the specified temperature range. The longest tuning range is obtained in typical conditions (typical power supplies and ambient temperature) and it slightly decreases when temperature is rising or decreasing.

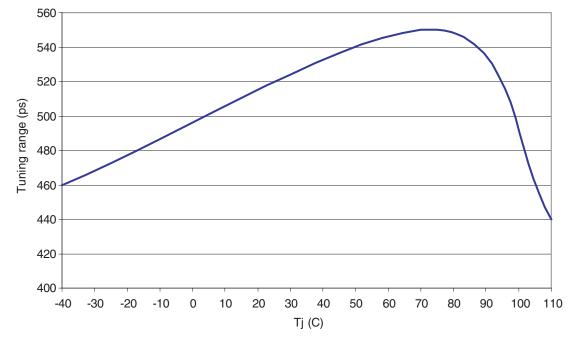
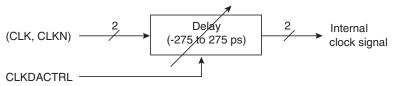



Figure 3-12. Standalone Delay Cell Tuning Range Versus Tj

#### 3.9 Clock Input Delay Cell (CLKDACTRL)

A fine tune delay cell is provided to fine-tune the delay between the clock path and the data path the DMUX input. This adjustment may be necessary depending on the sampling rate and/or if there are misalignments or skews on the different input data. However, data path skews should be maintained below 50 ps.


For more information on CLKDACTRL values to be applied, depending on the sampling rate, please refer to the application note reference 5444.

The delay is controlled by the CLKDACTRL analog control input. It ranges from -275 to 275 ps for CLK-DACTRL varying from  $V_{CCD}/3$  to  $(2 \times V_{CCD})/3$ . The transfer characteristics of the delay cell is identical to the one used in standalone delay cell.

This embedded delay line has characteristics similar to those of the standalone delay cell described in "Standalone Delay Cell (DAI, DAIN) (DAO, DAON)" above.

This delay depends on the center position of the (CLK, CLKN) clock path in relation to the digital input data in the DMUX input data paths (I0, I0N) ... (I9, I9N) and (IOR, IORN).

Figure 3-13. Block Diagram of the Clock Input Delay Cell



#### 3.10 Built-in Self Test (BIST)

A pattern generator might be activated by means of the BIST input. The BIST is activated on logic LOW (grounded), and deactivated on logic HIGH (10 K $\Omega$  to ground, or tied to V<sub>CCD</sub> = 3.3V, or left floating).

When activated, the digital outputs correspond to a sequence of *0* and *1*. Each bit is toggled at the clock rate.

For proper operation of pattern Built-In Test, the minimum  $V_{CCD}$  voltage should be 3.3V.

#### 3.11 Data Rate Versus Modes

The following table describes the frequency of the Data Ready output signal according to the 8 modes, assuming a 500 MHz DEMUX input clock.

 Table 3-6.
 Data Ready Output Frequency (MHz)

|             | Data Ready Output Frequency (MHz) |      |     |      |  |  |
|-------------|-----------------------------------|------|-----|------|--|--|
|             | 1                                 | :2   | 1   | :4   |  |  |
| DEMUX Ratio | DR                                | DR/2 | DR  | DR/2 |  |  |
| CLK TYPE    |                                   |      |     |      |  |  |
| CLK         | 250                               | 125  | 125 | 62,5 |  |  |
| CLK/2       | 500                               | 250  | 250 | 125  |  |  |

The following table describes the maximum input data rate guaranteed depending on CLK TYPE, DR TYPE and RatioSel settings.

| CLK TYPE | DR TYPE | RatioSel | Maximum Input Data<br>Rate Guaranteed<br>(Gsps) |
|----------|---------|----------|-------------------------------------------------|
|          | DR/2    | 1:2      | 1.8                                             |
|          | Un/2    | 1:4      | 2.2                                             |
| CLK/2    | DR      | 1:2      | 1.0                                             |
|          |         | 1:4      | 2.0                                             |
| CLK      |         | 1:2      | 1.2                                             |
|          | DR/2    | 1:4      | 1.2                                             |
|          | DD      | 1:2      | 1.0                                             |
|          | DR      | 1:4      | 1.2                                             |

 Table 3-7.
 Maximum Input Data Rate

## 4. Electrical Specifications

| Table 4-1. | Absolute Maximum Ratings |
|------------|--------------------------|
|------------|--------------------------|

| Parameter                    | Symbol                                                        | Value                           | Unit |
|------------------------------|---------------------------------------------------------------|---------------------------------|------|
| Digital power supply         | V <sub>CCD</sub>                                              | 3.6                             | V    |
| Output power supply          | V <sub>PLUSD</sub>                                            | 3.6                             | V    |
| Data input                   | 10, 10N19, 19N, 10R, 10RN,<br>DAI, DAIN                       | - 0.3 to V <sub>CCD</sub> + 0.3 | v    |
| Clock input                  | VCLK, VCLKN                                                   | - 0.3 to V <sub>CCD</sub> + 0.3 | V    |
| Control inputs               | SLEEP, STAGG, ASYNCRST,<br>BIST, RS, DAEN, CLKTYPE,<br>DRTYPE | - 0.3 to V <sub>CCD</sub> + 0.3 | v    |
| Control inputs               | CLKDACTRL, DACTRL                                             | - 0.3 to V <sub>CCD</sub> + 0.3 | V    |
| Maximum junction temperature | TJ                                                            | 125                             | °C   |
| Storage temperature          | T <sub>stg</sub>                                              | - 65 to 150                     | °C   |

Notes: 1. Absolute maximum ratings are limiting values (referenced to GND = 0V) and are to be applied individually, while other parameters are within the specified operating conditions. Long exposure to maximum ratings might affect device reliability.

2. All integrated circuits must be handled with appropriate care to avoid damage caused by ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure of the device.

| Table 4-2. | Recommended | Conditions of Use |
|------------|-------------|-------------------|
|------------|-------------|-------------------|

.

| Parameter                   | Symbol                          | Comments         | Min                                             | Тур | Max   | Unit |
|-----------------------------|---------------------------------|------------------|-------------------------------------------------|-----|-------|------|
| Digital power supply        | V <sub>CCD</sub>                |                  | 3.15                                            | 3.3 | 3.45  | V    |
| Output power supply         | V <sub>PLUSD</sub>              |                  | 2.375                                           | 2.5 | 2.625 | V    |
| Operating temperature range | T <sub>C</sub> , T <sub>J</sub> | Industrial grade | - 40 ° < T <sub>C</sub> , T <sub>J</sub> < 110° |     | °C    |      |

#### Table 4-3. Electrical Characteristics

| Parameter                                                                                                                                         | Symbol                                           | Test Level    | Min                 | Тур                           | Max                                                                                  | Unit             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|---------------------|-------------------------------|--------------------------------------------------------------------------------------|------------------|
| Resolution                                                                                                                                        |                                                  | 4             | 10                  | bit with additior             | nal 11th bit                                                                         | Bit              |
| ESD protection                                                                                                                                    |                                                  | 4             | 1000                |                               |                                                                                      | V                |
| Power Requirements                                                                                                                                | ù                                                |               |                     |                               |                                                                                      |                  |
| Digital power supply voltage <sup>(1)</sup>                                                                                                       | V <sub>CCD</sub>                                 | 1             | 3.15                | 3.3                           | 3.45                                                                                 | V                |
| Output power supply voltage                                                                                                                       | V <sub>PLUSD</sub>                               | 1             | 2.375               | 2.5                           | 2.625                                                                                | V                |
| Digital power supply current<br>1:2 mode<br>1:4 mode<br>SLEEP mode<br>Additional current with SDA enabled<br>Additional current with BIST enabled | I <sub>VCCD</sub>                                | 1             |                     | 540<br>600<br>170<br>22<br>27 | 610 <sup>(5)</sup><br>680 <sup>(5)</sup><br>200 <sup>(5)</sup><br>30<br>35           | mA               |
| Output power supply current<br>1:2 mode<br>1:4 mode<br>SLEEP mode                                                                                 | I <sub>VPLUSD</sub>                              | 1             |                     | 260<br>280<br>230             | 340 <sup>(5)</sup><br>360 <sup>(5)</sup><br>290 <sup>(5)</sup>                       | mA               |
| Power dissipation<br>1:2 mode<br>1:4 mode<br>SLEEP mode (1:4)<br>All active (1:4, BIST & SDA enabled)                                             | P <sub>D</sub>                                   | 1             |                     | 2.45<br>2.7<br>1.15<br>2.85   | 3.0 <sup>(5)</sup><br>3.3 <sup>(5)</sup><br>1.4 <sup>(5)</sup><br>3.4 <sup>(5)</sup> | W                |
| LVDS Data/Clock inputs and Outputs (i                                                                                                             | ncluding DAI, I                                  | DAIN and DAO, | DAON)               |                               |                                                                                      |                  |
| Logic compatibility                                                                                                                               |                                                  |               |                     | LVDS                          |                                                                                      |                  |
| Input common mode <sup>(2)</sup>                                                                                                                  | V <sub>ICM</sub>                                 | 1             | 1                   | 1.25                          | 1.6                                                                                  | V                |
| Output common mode <sup>(3)</sup>                                                                                                                 | V <sub>OCM</sub>                                 | 1             | 1.125               | 1.25                          | 1.375                                                                                | V                |
| Differential input <sup>(2)</sup>                                                                                                                 | VIDIFF                                           | 1             | 100                 | 350                           | _                                                                                    | mV               |
| Differential output                                                                                                                               | V <sub>ODIFF</sub>                               | 1             | 250                 | 350                           | 500                                                                                  | mV               |
| Output level High <sup>(4)</sup>                                                                                                                  | V <sub>OH</sub>                                  | 1             | 1.25                | 1.425                         | _                                                                                    | V                |
| Output level Low <sup>(4)</sup>                                                                                                                   | V <sub>OL</sub>                                  | 1             | _                   | 1.075                         | 1.25                                                                                 | V                |
| Static Inputs (SLEEP, STAGG, BIST, RS                                                                                                             | , DAEN, CLKT                                     | YPE, DRTYPE)  |                     |                               |                                                                                      |                  |
| Control input voltages:<br>- Logic low<br>Resistor to ground<br>Voltage level<br>- Logic high<br>Resistor to ground<br>Voltage level              | R <sub>IL</sub><br>VIL<br>R <sub>IH</sub><br>VIH | 1             | 0<br>10k<br>2.0     |                               | 10<br>0.5<br>Infinite                                                                | Ω<br>V<br>Ω<br>V |
| Static Inputs (CLKDACTRL, DACTRL)                                                                                                                 |                                                  |               |                     |                               |                                                                                      |                  |
| Control input voltages                                                                                                                            |                                                  | 4             | V <sub>CCD</sub> /3 |                               | $2 \times V_{CCD}/3$                                                                 | V                |

#### Table 4-3. Electrical Characteristics (Continued)

| Parameter                                  | Symbol          | Test Level | Min         | Тур | Max | Unit |  |
|--------------------------------------------|-----------------|------------|-------------|-----|-----|------|--|
| Reset Input (ASYNCRST)                     |                 |            |             |     |     |      |  |
| Logic compatibility                        |                 |            | LVCMOS/CMOS |     |     |      |  |
| Control input voltages: resistor to Ground |                 |            |             |     |     |      |  |
| - Logic low                                | VIL             | 1          | 0           |     | 1.0 | V    |  |
| - Logic high                               | V <sub>IH</sub> |            | 1.6         |     | 3.3 |      |  |

Notes: 1. For proper operation of BIST mode,  $V_{CCD}$  min = 3.3V.

2. Given for a differential input.

3. Assuming  $100\Omega$  termination ASIC load

4.  $V_{OH}$  min and  $V_{OL}$  max can never be at 1.25V at the same time when  $V_{ODIFF}$  min = 250 mV.

5. Worst case value obtained with maximum supply voltages over full temperature range.

|                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Test  |                                                      |         |         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------------------------------------------------|---------|---------|------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                          | Symbol           | Level | Min                                                  | Тур     | Мах     | Unit |
| Input Clock                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |       |                                                      |         |         |      |
| Input Clock duty cycle                                                                                                                                                                                                                                                                                                                                                                                                             | DCYC             | 4     | 40                                                   | 50      | 60      | %    |
| Maximum Input Data Rate<br>CLK TYPE = CLK/2, DR TYPE = DR/2, RS = 1:2<br>CLK TYPE = CLK/2, DR TYPE = DR/2, RS = 1:4<br>CLK TYPE = CLK/2, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK/2, DR TYPE = DR, RS = 1:4<br>CLK TYPE = CLK, DR TYPE = DR/2, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR/2, RS = 1:4<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:4  | Fclk             | 4     | 0.9<br>1.1<br>0.5<br>1.0<br>1.2<br>1.2<br>1.0<br>1.2 |         |         | GHz  |
| Input Data                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | i     |                                                      |         |         |      |
| Data to Input Clock setup & hold time <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                               | TSetup/<br>THold | 4     |                                                      |         |         | ps   |
| Maximum Input Data Rate<br>CLK TYPE = CLK/2, DR TYPE = DR/2, RS = 1:2<br>CLK TYPE = CLK/2, DR TYPE = DR/2, RS = 1:4<br>CLK TYPE = CLK/2, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK/2, DR TYPE = DR, RS = 1:4<br>CLK TYPE = CLK, DR TYPE = DR/2, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR/2, RS = 1:4<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:4                                            | Fs               | 4     | 1.8<br>2.2<br>1.0<br>2.0<br>1.2<br>1.2<br>1.0<br>1.2 |         |         | Gsps |
| Output Data                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |       |                                                      |         |         |      |
| Maximum Output Data Rate<br>CLK TYPE = CLK/2, DR TYPE = DR/2, RS = 1:2<br>CLK TYPE = CLK/2, DR TYPE = DR/2, RS = 1:4<br>CLK TYPE = CLK/2, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK/2, DR TYPE = DR, RS = 1:4<br>CLK TYPE = CLK, DR TYPE = DR/2, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR/2, RS = 1:4<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:2<br>CLK TYPE = CLK, DR TYPE = DR, RS = 1:4 |                  | 4     | 900<br>550<br>500<br>500<br>600<br>300<br>500<br>300 |         |         | Msps |
| Output Rise/Fall time for Data (20% – 80%)                                                                                                                                                                                                                                                                                                                                                                                         | TR/TF            | 4     |                                                      | 460/630 | 550/750 | ps   |
| Output Rise/Fall time for Data Ready (20% - 80%)                                                                                                                                                                                                                                                                                                                                                                                   | TR/TF            | 4     |                                                      | 460/630 | 550/750 | ps   |
| CLK to Data Output delay                                                                                                                                                                                                                                                                                                                                                                                                           | TOD              | 4     | 5.0                                                  | 5.9     | 7.1     | ns   |
| CLK to Data Ready Output delay                                                                                                                                                                                                                                                                                                                                                                                                     | TDR              | 4     | 4.5                                                  | 5.5     | 6.7     | ns   |
| Data Ready to Data delay                                                                                                                                                                                                                                                                                                                                                                                                           | ITOD-TDRI        | 4     | 200                                                  | 500     | 600     | ps   |

#### Table 4-4. Switching Performances and Characteristics

#### Table 4-4. Switching Performances and Characteristics (Continued)

| Parameter                                                                               | Symbol   | Test<br>Level | Min  | Тур          | Мах   | Unit            |
|-----------------------------------------------------------------------------------------|----------|---------------|------|--------------|-------|-----------------|
| Output Data Pipeline delay                                                              |          |               |      |              |       |                 |
| Synchronized 1:2 mode                                                                   |          |               |      | 0.5          |       |                 |
| Synchronized 1:4 mode                                                                   | TPD      | 4             |      | 1.5          |       | Clock<br>Cycles |
| Staggered 1:2 mode                                                                      |          |               |      | 0/0.5        |       | Oycico          |
| Staggered 1:4 mode                                                                      |          |               |      | 0/0.5 /1/1.5 |       |                 |
| Asynchronous Reset                                                                      |          |               |      |              |       |                 |
| ASYNCRST maximum input frequency                                                        | FRST     | 5             |      | 200          |       | MHz             |
| ASYNCRST minimum pulse width                                                            | RSTPW    | 5             |      | 1            |       | ns              |
| CLK to ASYNCRST timing <sup>(2)</sup>                                                   |          |               |      |              |       |                 |
| Forbidden area width                                                                    |          | 4             |      |              | 250   | ps              |
| Minimum delay between falling edge of                                                   |          |               |      |              |       |                 |
| ASYNCRST and rising edge of CLK                                                         |          | 4             |      |              | ± 125 | ps              |
| Standalone Delay Cell <sup>(3)</sup>                                                    |          |               |      |              |       |                 |
| Maximum Input Frequency                                                                 | FMSDA    | 4             | 600  |              |       | MHz             |
| Input duty cycle                                                                        | DCYCSDA  | 4             | 40   | 50           | 60    | %               |
| (DAI, DAIN) to (DAO, DAON) propagation delay <sup>(3)</sup>                             | TSDAMIN  | 4             | 1.70 | 2.00         | 2.30  | ns              |
| with DACTRL = $V_{CCD}/3$                                                               |          |               | 1.70 | 2.00         | 2.00  | 110             |
| (DAI, DAIN) to (DAO, DAON) propagation delay <sup>(3)</sup> with DACTRL = $2*V_{CCD}/3$ | TSDAMAX  | 4             | 2.20 | 2.50         | 2.80  | ns              |
| SDA tuning range <sup>(4)</sup>                                                         | SDARANGE | 4             | 400  | 550          | 600   | ps              |

Notes: 1. Input data to input clock setup and hold time are not defined, because they are dependent of CLKDACTRL adjustment. It is recommended to center the clock edge in the middle of the data (with ± 100 ps) and to adjust CLKDACTRL depending on clock sampling rate.

2. See Figure 4-1 on page 20, CLK to ASYNCRST timing is given assuming V (CLKDACLTRL) =  $V_{CC}/2$ 

3. See Transfer characteristic on Figure 3-11 on page 12.

4. The delay cell used in both standalone delay cell and Input clock path, has a characteristics that is not linear with Junction temperature. The largest tuning range is obtained near ambient temperature. See Figure 3-12 on page 13.

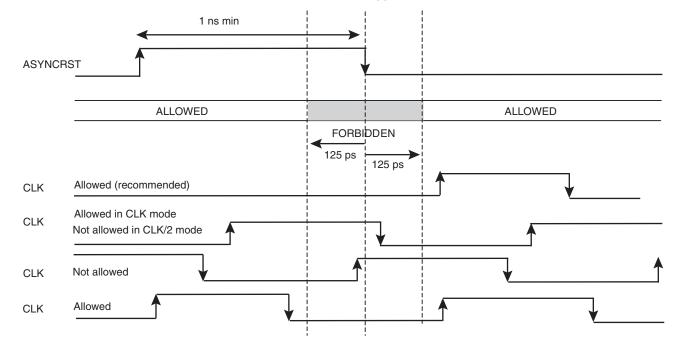
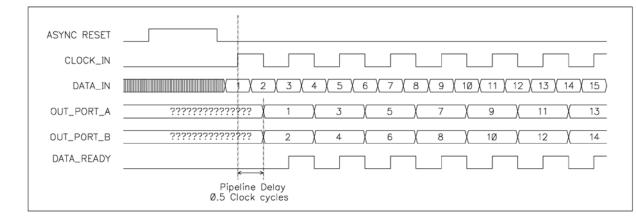
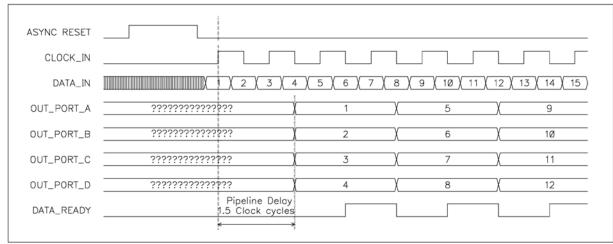


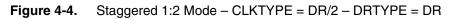

Figure 4-1. CLK to ASYNCRST timing with V(CLKDACTRL) =  $V_{CC}/2g$ 

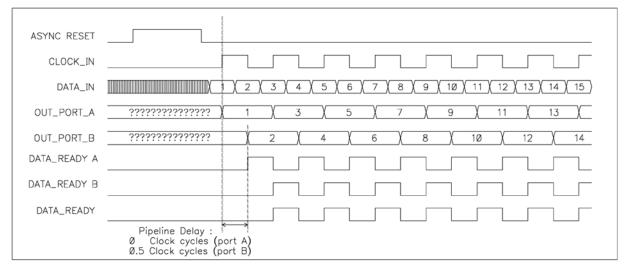

It is highly recommended to stop the clock at the Low level when ASYNCRST is active (high level). Note that when Amel's ADCs are in reset, the ADC Data Ready output (input clock of the DMUX) is stopped at the low level. In the case where the clock can not be stopped during the reset (not recommended), it is not allowed to have an active edge (rising edge in CLK mode but both rising and falling edge in CLK/2 mode) of the CLK clock within a  $\pm 125$  ps area around the falling edge of ASYNCRST.

The end of the reset occurs at the falling edge of ASYNCRST, and the active edge of the Clock has to occur at the minimum 125 ps after the falling edge of ASYNCRST to ensure a proper timing.

The figure represented above is given for V(CLKDACTRL) =  $V_{CC}/2 = 1.65V$ . If V(CLKDACTRL) has a different value, the forbidden area has to be shifted accordingly to V(CLKDACTRL) value. Please refer to Figure 3-11 on page 12 for delay calculation.

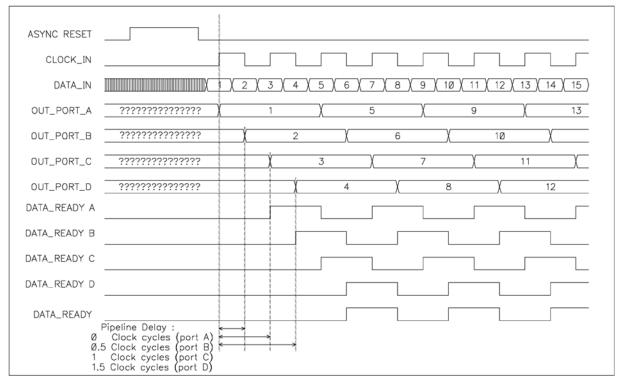

For example, assuming ambient temperature and typical supplies, if V(CLKDACTRL) is set to 2.2V, the additional delay compared to 1.65V is 2.55 ns - 2.25 ns = 300 ps. This means that it is forbidden to have an active edge of the clock within - 425 ps/- 175 ps (the forbidden area is shifted on the left on the above figure).


#### 4.1 Timing Diagrams




#### Figure 4-2. Simultaneous 1:2 Mode – CLKTYPE = DR/2 – DRTYPE = DR

#### Figure 4-3. Simultaneous 1:4 Mode – CLKTYPE = DR/2 – DRTYPE = DR








#### Note: DATA\_READY A = DRA (pin A6) DATA\_READY B = DRB (pin H1)

#### Figure 4-5. Staggered 1:4 Mode – CLKTYPE = DR/2 – DRTYPE = DR



Note: DATA\_READY A = DRA (pin A6) DATA\_READY B = DRB (pin H1) DATA\_READY C = DRC (pin W5) DATA\_READY D = DRD (pin W16)

#### 4.2 Explanation of Test Levels

#### Table 4-5.

| 1 | 100% production tested at + 25 °C                                                                                          |
|---|----------------------------------------------------------------------------------------------------------------------------|
| 2 | 100% production tested at + 25 $^\circ\text{C}$ , and sample tested at specified temperature.                              |
| 3 | Sample tested only at specified temperature.                                                                               |
| 4 | Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature). |
| 5 | Parameter is a typical value only.                                                                                         |

Only MIN and MAX values are guaranteed (typical values are issuing from characterization results).

The level 1 and 2 tests are performed at 10 MHz.

## 5. Pin Description

#### Table 5-1.Pin Description

| Symbol                                              | Pin Number                                                                                                                                                                                         | Function                                                                                                      |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Power Supplies                                      |                                                                                                                                                                                                    |                                                                                                               |
| V <sub>CCD</sub>                                    | C12, C10, C8, C3, D12, D10,<br>D8, D5, D4, D3, E4, E17, E16,<br>G17, G16, G4, G3, J17, J16,<br>K16, K4, K3, L17, L16, N17,<br>N16, R16, T17, T16, T12, T10,<br>T8, T5, T4, T3, U12, U10, U8,<br>U3 | Digital 3.3V supply                                                                                           |
| V <sub>PLUSD</sub>                                  | C15, C14, C13, C11, C9, C7,<br>C6, C5, C4, D13, D11, D9, D7,<br>D6, E3, J4, J3, L4, L3, N4, N3,<br>R4, R3, T14, T13, T11, T9, T7,<br>T6, U15, U14, U13, U11, U9,<br>U7, U6, U5, U4                 | Output 2.5V supply                                                                                            |
| DGND                                                | C18, C17, C16, D17, D14, F17,<br>F16, F4, F3, H17, H16, H4, H3,<br>K17, M17, M16, M4, M3, P17,<br>P16, P4, P3, R17, T15, U19,<br>U18, U17, U16                                                     | Ground                                                                                                        |
| Digital Inputs                                      |                                                                                                                                                                                                    |                                                                                                               |
| 10, 11, 12, 13, 14, 15, 16, 17, 18, 19              | D19, E19, F19, G19, J19, K19,<br>L19, M19, N19, P19                                                                                                                                                | In-phase (+) digital input signal                                                                             |
| 10n, 11n, 12n, 13n, 14n, 15n,<br>16n, 17n, 18n, 19n | D18, E18, F18, G18, J18, K18,<br>L18, M18, N18, P18                                                                                                                                                | Inverted phase (-) digital input signal                                                                       |
| IORN                                                | B18                                                                                                                                                                                                | In-phase (+) digital input signal additional bit                                                              |
| IOR                                                 | B19                                                                                                                                                                                                | Inverted phase (-) digital input signal for additional bit                                                    |
| DAI                                                 | T18                                                                                                                                                                                                | In-phase (+) input signal for standalone delay cell                                                           |
| DAIN                                                | T19                                                                                                                                                                                                | Inverted phase (-) input signal for standalone delay cell                                                     |
| Clock Inputs                                        |                                                                                                                                                                                                    |                                                                                                               |
| CLK                                                 | H19                                                                                                                                                                                                | In-phase (+) clock input                                                                                      |
| CLKN                                                | H18                                                                                                                                                                                                | Inverted phase (-) clock input                                                                                |
| Digital Outputs                                     | •                                                                                                                                                                                                  |                                                                                                               |
| A0, A1, A2, A3, A4, A5, A6, A7,<br>A8, A9           | B16, B15, B14, B13, B12, B11,<br>B10, B9, B8, B7                                                                                                                                                   | In-phase (+) digital outputs for port A<br>A0 is the LSB, A9 is the MSB                                       |
| A0N, A1N, A2N, A3N, A4N,<br>A5N, A6N, A7N, A8N, A9N | A16, A15, A14, A13, A12, A11,<br>A10, A9, A8, A7                                                                                                                                                   | Inverted phase (-) digital outputs for port A                                                                 |
| AOR/DRAN                                            | B6                                                                                                                                                                                                 | In-phase (+) additional bit output for port A or inverted phase (-) output clock in staggered mode for port A |
| AORN/DRA                                            | A6                                                                                                                                                                                                 | Inverted phase (-) additional bit output for port A or in-phase (+) output clock in staggered mode for port A |

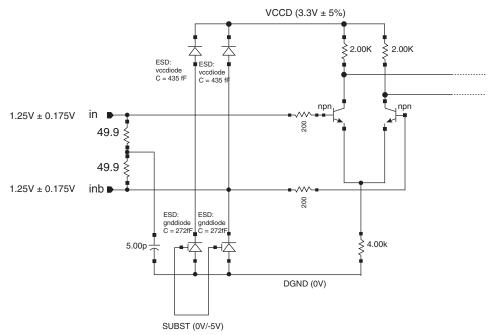
#### **Table 5-1.**Pin Description (Continued)

| Symbol                                              | Pin Number                                      | Function                                                                                                      |  |  |
|-----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| B0, B1, B2, B3, B4, B5, B6, B7,                     | B5, B4, B3, B2, C2, D2, E2, F2,                 | In-phase (+) digital outputs for port B                                                                       |  |  |
| B8, B9                                              | G2, H2                                          | B0 is the LSB, B9 is the MSB                                                                                  |  |  |
| B0N, B1N, B2N, B3N, B4N,<br>B5N, B6N, B7N, B8N, B9N | A5, A4, A3, A2, B1, C1, D1, E1,<br>F1, G1       | Inverted phase (-) digital outputs for port B                                                                 |  |  |
| BOR/DRBN                                            | J2                                              | In-phase (+) additional bit output for port B or inverted phase (-) output clock in staggered mode for port B |  |  |
| BORN/DRB                                            | H1                                              | Inverted phase (-) additional bit output for port B or in-phase (+) output clock in staggered mode for port B |  |  |
| C0, C1, C2, C3, C4, C5, C6,<br>C7, C8, C9           | M2, N2, P2, R2, T2, U2, V1, V2,<br>V3, V4       | In-phase (+) digital outputs for port C<br>C0 is the LSB, C9 is the MSB                                       |  |  |
| C0N, C1N, C2N, C3N, C4N,<br>C5N, C6N, C7N, C8N, C9N | L1, M1, N1, P1, R1, T1, U1,<br>W2, W3, W4       | Inverted phase (-) digital outputs for port C                                                                 |  |  |
| COR/DRCN                                            | V5                                              | In-phase (+) additional bit output for port C or inverted phase (-) output clock in staggered mode for port C |  |  |
| CORN/DRC                                            | W5                                              | Inverted phase (-) additional bit output for port C or in-phase (+) output clock in staggered mode for port C |  |  |
| D0, D1, D2, D3, D4, D5, D6,<br>D7, D8, D9           | V6, V7, V8, V9, V10, V11, V12,<br>V13, V14, V15 | In-phase (+) digital outputs for port D<br>D0 is the LSB, D9 is the MSB                                       |  |  |
| D0N, D1N, D2N, D3N, D4N,<br>D5N, D6N, D7N, D8N, D9N | W6, W7, W8, W9, W10, W11,<br>W12, W13, W14, W15 | Inverted phase (-) digital outputs for port D                                                                 |  |  |
| DOR/DRDN                                            | V16                                             | In-phase (+) additional bit output for port D or inverted phase (-) output clock in staggered mode for port D |  |  |
| DORN/DRD                                            | W16                                             | Inverted phase (-) additional bit output for port D or in-phase (+) output clock in staggered mode for port D |  |  |
| DR                                                  | J1                                              | In-phase (+) data ready signal output                                                                         |  |  |
| DRN                                                 | K2                                              | Inverted phase (-) data ready signal output                                                                   |  |  |
| DAO                                                 | R18                                             | In-phase (+) output signal for standalone delay cell                                                          |  |  |
| DAON                                                | R19                                             | Inverted phase (-) output signal for standalone delay cell                                                    |  |  |
| Additional Functions                                |                                                 |                                                                                                               |  |  |
| ASYNCRST                                            | B17                                             | Asynchronous reset signal                                                                                     |  |  |
| CLKTYPE                                             | V18                                             | Input clock type selection signal                                                                             |  |  |
| DRTYPE                                              | K1                                              | Output clock type selection signal                                                                            |  |  |
| CLKDACTRL                                           | V19                                             | Clock delay cell control signal                                                                               |  |  |
| DACTRL                                              | W18                                             | Standalone delay cell control signal                                                                          |  |  |
| DAEN                                                | W17                                             | Standalone delay cell enable signal                                                                           |  |  |
| RS                                                  | L2                                              | Ratio selection signal                                                                                        |  |  |
| SLEEP                                               | A18                                             | Sleep mode enable                                                                                             |  |  |

**Table 5-1.**Pin Description (Continued)

| Symbol | Pin Number    | Function                               |
|--------|---------------|----------------------------------------|
| STAGG  | A17           | Staggered output mode selection signal |
| BIST   | V17           | Built-in Self Test enable              |
| NC     | C19, D15, D16 | Leave floating                         |

#### 5.1 AT84CS001 Pinout


#### Figure 5-1. EBGA 240 (Bottom View)

| 19          | 18    | 17    | 16     | 15     | 14        | 13     | 12        | 11        | 10    | 9          | 8     | 7      | 6      | 5      | 4      | 3      | 2    | 1          | - |
|-------------|-------|-------|--------|--------|-----------|--------|-----------|-----------|-------|------------|-------|--------|--------|--------|--------|--------|------|------------|---|
| $ \circ $   | SLEEP | STAGG | AON    | A1N    | A2N       | A3N    | (A4N)     | A5N       | A6N   | A7N        | ABN   | A9N    |        | BON    | BIN    | B2N    | B3N  | $\bigcirc$ | A |
| IOR         | IORN  |       | r (AO) | (A1)   | (A2)      | (A3)   | (A4)      | (A5)      | (A6)  | (A7)       | AB    | (A9)   | AOR    | во     | (B1)   | B2     | ВЗ   | B4N        | в |
| NC          |       |       |        | PLUSD  | PLUSD     | PLUS   | VCCD      | VPLUSD    | VCCD  | VPLUSD     | VCCD  | VPLUSD | VPLUSD | VPLUSD | VPLUSD | VCCD   | (B4) | B5N        | С |
| 10          |       |       | (N/C)  | (N/C)  |           | VPLUSD | VCCD      | VPLUSD    | VCCD  | VPLUSD     | VCCD  | VPLUSD | VPLUSD | VCCD   | VCCD   | VCCD   | (B5) | B6N        | D |
| (1)         |       | VCCD  | VCCD   |        |           |        |           |           |       |            |       |        |        |        | VCCD   | PLUS   | (B6) | B7N        | E |
| (12)        | (12N) |       |        |        |           |        |           |           |       |            |       |        |        |        |        |        | (B7) | BBN        | F |
| (13)        | (I3N) | VCCD  | VCCD   |        |           |        |           |           |       |            |       |        |        |        | VCCD   | VCCD   | ВВ   | B9N        | G |
| CLK         |       |       |        |        |           |        |           |           |       |            |       |        |        |        |        |        | В9   |            | н |
| (14)        | (I4N) | VCCD  | VCCD   |        |           |        |           |           |       |            |       |        |        |        | VPLUSD | VPLUSD |      |            | J |
| (15)        | (15N) |       | VCCD   |        |           |        |           |           |       |            |       |        |        |        | VCCD   | VCCD   |      | DRTYPE     | к |
| (I6)        | (I6N) | VCCD  | VCCD   |        |           |        |           |           |       |            |       |        |        |        | VPLUSD | VPLUSD | RS   | CON        | L |
| 17          | (17N) |       |        |        |           |        |           |           |       |            |       |        |        |        |        |        | C0)  | C1N        | М |
| (18)        |       | VCCD  | VCCD   |        |           |        |           |           |       |            |       |        |        |        | VPLUSD | VPLUSD | C1)  | C2N        | N |
| (19)        | (I9N) |       |        |        |           |        |           |           |       |            |       |        |        |        |        |        | C2   | C3N        | Р |
| DAON        | DAO   |       | VCCD   |        |           |        |           |           |       |            |       |        |        |        | PLUSE  | PLUSE  | C3)  | C4N        | R |
|             | DAI   | VCCD  | VCCD   |        | VPLUSD    | VPLUSD | VCCD      | PLUS      | VCCD  | VPLUSD     | VCCD  | VPLUSD | VPLUSD | VCCD   | VCCD   | VCCD   | C4   | C5N        | Т |
|             |       |       |        | VPLUSD | VPLUSD    | VPLUSD | VCCD      | VPLUSD    | VCCD  | VPLUSD     | VCCD  | VPLUSD | VPLUSD | VPLUSD | PLUS   | VCCD   | (C5) | C6N        | U |
| CLKDACTRI   |       | BIST  |        | (D9)   | <b>D8</b> | D7     | <b>D6</b> | <b>D5</b> | D4    | <b>D</b> 3 | (D2)  | (D1)   |        | ORCN   | (C9)   | (C8)   | C7   | (C6)       | V |
| $ \bigcirc$ |       | DAEN  | DORN   | D9N    | DBN       | (D7N)  | DEN       | D5N       | (D4N) | D3N        | (D2N) | DIN    | DON    |        | C9N    | CBN    | C7N  | $\bigcirc$ | W |

## 6. Input/Output Equivalent Schematics

#### 6.1 Data and Clock Differential Input Buffer

Figure 6-1. LVDS Data and LVDS Clock Input Buffer and Standalone Delay Line Input (DAI, DAIN)



#### 6.2 Data and Clock Output Buffer

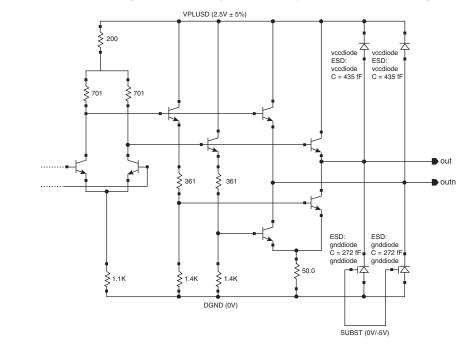
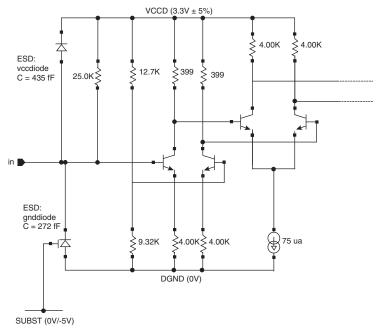




Figure 6-2. LVDS Data and Clock Output Buffer and (DAO, DAON) Standalone Line Output

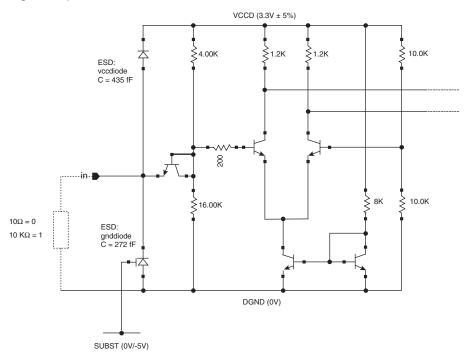
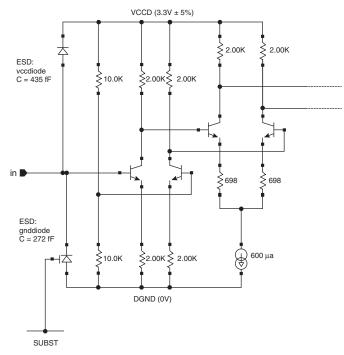

#### 6.3 Asynchronous Reset Buffer

Figure 6-3. Asynchronous Reset Input Buffer




#### 6.4 Control Signals Input Buffers





#### 6.5 Standalone Delay Cell Control Input Buffer

Figure 6-5. Standalone Delay Cell Control Input Buffer (DACTRL, CLKDACTRL)



## 7. Thermal and Moisture Characteristics



#### Figure 7-1. DMUX Thermal Model for 240 EBGA (Typical Values) Derived from ANSYS Thermal Simulation

#### 7.1 Moisture Characteristics

This device is sensitive to moisture (MSL3 according to JEDEC standard). Its shelf life in sealed bag is 12 months at < 40  $^{\circ}$ C and < 90% relative humidity (RH).

Once the bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temperature 220 °C) must be:

- Mounted within 168 hours in factory conditions of  $\leq$  30 °C/60% RH, or
- Stored at ≤ 20% RH

Before mounting, devices will require baking if the humidity indicator is > 20% when read at  $23 \degree C \pm 5 \degree C$ .

If baking is indeed required, the devices might be baked for:


- 192 hours at 40 °C + 5 °C/-0 °C and < 5% RH for low-temperature device containers, or
- 24 hours at 125 °C  $\pm$  5 °C for high-temperature device containers

## 8. Applying the AT84CS001

#### 8.1 Bypassing, Decoupling and Grounding

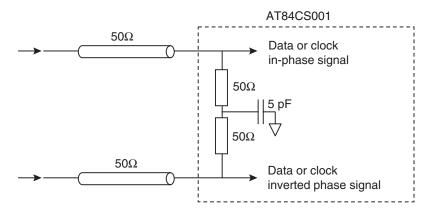
All power supplies must be decoupled to Ground as close as possible to the signal accesses to the board by 1  $\mu$ F in parallel to 100 nF.


Figure 8-1. AT84CS001 Power Supplies Decoupling and Grounding Scheme



Each group of neighboring power supply pins attributed to the same value should be bypassed with at least one pair of 100 pF capacitors in parallel to 10 nF capacitors. These capacitors should be placed as close as possible to the power supply package pins.

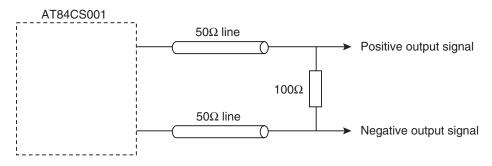
The minimum required pairs of capacitors by power supply type is:


- 15 for  $V_{\rm CCD}$
- 14 for  $V_{PLUSD}$
- Figure 8-2. AT84CS001 Power Supplies Bypassing Scheme

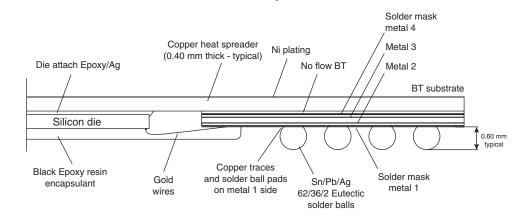


#### 8.2 LVDS Input Implementation

The input data (I0, I0N...I9, I9N and IOR, IORN) and clock (CLK, CLKN) as well as the (DAI, DAIN) input data of the standalone delay cell are LVDS-compatible. They are  $2 \times 50\Omega$  differentially terminated as shown in Figure 8-3.


Figure 8-3. AT84CS001 LVDS Input Data and Clock Termination Scheme

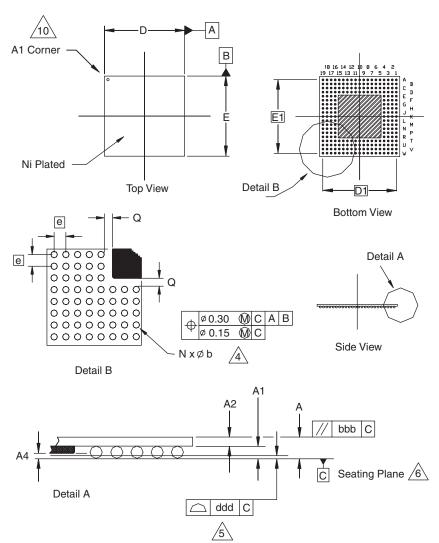



#### 8.3 LVDS Output Implementation

The data (AI, AIN...DI, DIN, AOR/DRAN, AORN/DRA...DOR/DRDN, DORN/DRD and DAO/DAON) and clock outputs (DR, DRN) are LVDS compatible. They must be  $100\Omega$  differentially terminated as shown in Figure 8-4.

Figure 8-4. AT84CS001 LVDS Output Termination Scheme




## 9. Package Information



#### Figure 9-1. Detailed Cross Section of the EBGA 240 Package

Note: In the DMUX package above, the die's underside is attached to the copper heat spreader so the copper heat spreader is at GND (0V). We recommend electrically isolating the copper heat spreader from the heat sink if a heat sink is used, in which case adequate low Rth electrical isolation should be used.

#### Figure 9-2. EBGA 240 Outline Dimensions



|                                    | Dimensional References |             |       |  |  |  |  |  |  |  |
|------------------------------------|------------------------|-------------|-------|--|--|--|--|--|--|--|
| Ref                                | Min                    | Max         |       |  |  |  |  |  |  |  |
| A                                  | 1.25                   | 1.45        | 1.60  |  |  |  |  |  |  |  |
| A1                                 | 0.50                   | 0.60        | 0.70  |  |  |  |  |  |  |  |
| D                                  | 24.80                  | 25.00       | 25.20 |  |  |  |  |  |  |  |
| D1                                 |                        | 22.86 (BSC) |       |  |  |  |  |  |  |  |
| E                                  | 24.80                  | 25.00       | 25.20 |  |  |  |  |  |  |  |
| E1                                 |                        | 22.86 (BSC) |       |  |  |  |  |  |  |  |
| b                                  | 0.70                   | 0.80        | 0.90  |  |  |  |  |  |  |  |
| A2                                 | 0.75                   | 0.85        | 0.95  |  |  |  |  |  |  |  |
| М                                  |                        | 19          |       |  |  |  |  |  |  |  |
| N                                  |                        | 240         |       |  |  |  |  |  |  |  |
| bbb                                |                        |             | 0.25  |  |  |  |  |  |  |  |
| ddd                                |                        |             | 0.20  |  |  |  |  |  |  |  |
| е                                  |                        | 1.27 TYP    |       |  |  |  |  |  |  |  |
| A4                                 | 0.15                   |             |       |  |  |  |  |  |  |  |
| Q                                  | 0.35                   |             |       |  |  |  |  |  |  |  |
| Ref: JEDEC MS-034B Variation BAK-1 |                        |             |       |  |  |  |  |  |  |  |

Notes:

- 1. All dimensions are in millimeters
- 2. "e" represents the BASIC solder ball grid pitch.
- 3. "M" represents the BASIC solder ball matrix size, and symbol "N" is the maximum allowable number of balls after depolulating.
- A Dimension "b" is measured at the maximum solder ball diameter parallel to primary DatumC.
- ß Dimension "ddd" is measured parallel to primary DatumC. A Primary Datum C and seating plane are defined by the
- spherical crowns of the solder balls.
- 7. Package surface shall be Ni plated.
- Encapsulant size may vary with die size. 8
- À
- Black spot for pin 1 identification.
  "A4" is measured at the Edge of encapsulant to the inner Edge of ball pad.
- 11. Dimensioning and tolerancing per ASME Y14.5 1994.
- 12. This drawing is for qualification purpose only.

## **10. Ordering Information**

| Part Number    | Package          | Temperature Range                                                     | Screening | Comments       |
|----------------|------------------|-----------------------------------------------------------------------|-----------|----------------|
| AT84CS001VTP   | EBGA 240         | Industrial grade<br>-40 °C < T <sub>C</sub> ; T <sub>J</sub> < 110 °C | Standard  |                |
| AT84CS001VTPY  | EBGA 240<br>RoHS | Industrial grade<br>-40 °C < T <sub>C</sub> ; T <sub>J</sub> < 110 °C | Standard  |                |
| AT84CS001TP-EB | EBGA 240         | Ambient                                                               | Prototype | Evaluation kit |

For lead-free version, please contact your local e2v sales office.

# e2v

#### How to reach us

Home page: www.e2v.com

Sales Office: United Kingdom e2v 106 Waterhouse Lane Chelmsford Essex CM1 2QU Tel: +44 (0)1245 493 493 Fax: +44 (0)1245 492 492

#### USA

e2v 4 Westchester Plaza Elmsford NY 10523-1482 Tel: +1 914 592 6050 Fax: +1 914 592 5148

#### France

e2v 16 Burospace F-91 572 Bievres Cedex Tel: +33 (0) 1 6019 5500 Fax: +33 (0) 1 6019 5529 Product Contact: e2v Avenue de Rochepleine BP 123 - 38521 Saint-Egrève Cedex France Tel: +33 (0)4 76 58 30 00 Hotline: hotline-bdc@e2v.com

Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.