

e2v CCD and CMOS sensors and systems designed for astronomical applications

Paul Jorden, Paul Jerram, Doug Jordan, Jérôme Pratlong, Mark Robbins e2v

SPIE, Edinburgh, 26 June 2016, Conf. 9915-3

Contents-1

An update of recent sensors and systems

e2v designs and manufactures an increasing suite of CMOS imagers for high performance use

1. CMOS Sensors achieve maturity

- Custom Backthinned CMOS sensors for ground-based astronomy
 - Custom CMOS sensors for space use
 - Standard CMOS sensors
 - CMOS developments

2. EM CCDs

- Standard L3 | Vision sensors
- Custom sensors for astronomy & science

3. Precision System assemblies

- The WUVS space sensor system
 - KMTNet focal planes
- The J-PAS OAJ Cryocam system

4. Summary

CIS113 (Vega)

Developed for the TAOS-II project.

Development complete; production of 40-off in progress

Paper by Jérôme Pratlong, 9915, Tues am, S8

Number of pixels	1920 (H) × 4608 (V)	
Pixel size	16.0 µm square	
Image area	$73.73m \times 30.72 mm$	
Output ports	8 (REF and SIG each)	
Package size	82.39 mm × 31.7 mm	
Package format	76 pin ceramic PGA attached to invar block	
Focal plane height	14.0 mm	
Flatness	< 30 μm (peak - valley)	
Conversion gain	75 μV/e ⁻	
Readout noise	3 e ⁻ at 2 MP/s per ch.	
Maximum pixel rate	2 MP/s per channel	
Maximum charge	22,000 e ⁻ per pixel	
Dark signal	70 e ⁻ /pixel/s (at 21 °C)	
Frame rate	2 fps (full frame mode) 20 fps (multiple ROI's)	

CIS112 (NGSD)

Developed for Adaptive Optics on large telescopes.

- High frame rate and very low noise
- Backthinned and red sensitive
- Precursor of 1600 X 1600 sensor

Number of pixels	880 X 840	
Pixel size	24.0 μm square	
Image area	21.12 mm × 20.16 mm	
Output	Digital; multiple parallel ADCs	
Package format	Ceramic PGA	
Readout noise	< 3 e ⁻	
Variants	> 85% at 589 nm	
Maximum charge per pixel	4,000 e ⁻	
Frame rate	> 700 fps	

See paper by Mark Downing, 9915, Tues am, S8

Onyx EV76C664

Key Features

- Standard product with low noise
- Fully digital sensor with multiple modes
- Frontside illuminated with micro-lens

Number of pixels	1280 X 1024 (1.3 Megapixel)	
Pixel size	10.0 μm square	
Shutter modes	Global and Rolling	
Output	8, 10, 12, 14 bit LVDS	
Package format	Ceramic 67-pin PGA	
Readout noise	6 e ⁻ (min, depending on mode)	
Quantum Efficiency	Monochrome or sparse colour (with microlens)	
Maximum charge	16,000 e ⁻ per pixel	

See e2v.com for datasheet

CIS115 (Sirius)

- Backthinned sensor with low read-noise
- Designed for space applications
- Planned for JANUS (Juice) ESA mission
- Being qualified for space use by end-2016
- Samples available; FMs to follow

Number of pixels	$1504(H)\times2000(V)$
Pixel size	7.0 µm square
Number of output ports (reset and signal pins)	4 pairs of analogue outputs
Package size	48.26 mm square
Package format	140 pin ceramic PGA
Flatness	< 10 µm (peak to valley)
Conversion gain	$35 \mu V/e^-$
Readout noise	7 e ⁻ (Rolling shutter)
Maximum pixel data rate	8 MP/s per channel
Maximum charge per pixel	55,000 e ⁻
Frame rate	Up to 10 Hz
Minimum time to read one line at 6.2 MP/s	66.25 μs
Frame rate at full resolution	Up to 7.5 fps

TDI CMOS development

Time-Delay-Integrate used for scanning space applications; eg GAIA uses TDI CCDs

- TDI CMOS offers digital architecture & low power
- Most promising technique is a CCD-like structure-
- Charge summation along track
- Good CTE after irradiation is important
- Small test devices made & tested
- Full sized device planned

CIS111 (MTG FCI)

- Example of imager used for earth observation-
- Offers higher frame rate and lower crosstalk than an equivalent CCD
- CIS111 to be used on Meteosat Third Generation Flexible Combined Imager
- 5 independent imager blocks with in-package filters
- Rhombus shaped pixels in outer blocks
- Optimised for good transfer through large pixels and low lag

CIS111 architecture

CIS116 (Metimage)

Custom test vehicle with 250 um square pixels

- Each pixel has 8 photodiodes with a common sense node
- Aims to optimise lag and Charge-Voltage-Factor
- 2.5 Me- peak signal; 84 dB dynamic range
- Designed for backthinning
- Test devices have been characterised

Contents-2

We illustrate selected EMCCDs
Internal electron gain allows sub-electron read-noise
Combined with backthinned spectral response for very high sensitivity
Several formats and sizes available

Standard (non EMCCDs) are not discussed in the presentation- since many are visible on e2v.com and have been discuss previously

2. EM CCDs

- Standard L3Vision sensors
- Custom sensors for astronomy & science

CCD sensors-1

CCD201

- Standard product
- 1024 X 1024 pixels; 13 μm pixels
- Larger format than CCD97 (512 X 512 pixels)
- Widely used for commercial applications
- Also useful for astronomy at low signal levels
- Sub-electron read noise
- Backthinned for high spectral response
- Inverted mode dark current
- Under evaluation for space use (NASA WFIRST Coronagraph)

See e2v.com for datasheet

Harding L, et al, "Technology advancement of the CCD201-20 EMCCD for the WFIRST-AFTA Coronagraph Instrument...," JATIS 011007, (2016).

See poster by Nathan Bush, 9904, Tues pm

CCD sensors-2

E2V Bringing life to technology

CCD282

- Largest EMCCD manufactured to date
- 4096 X 4096 pixel image area
- Split frame-transfer read-out with 8 outputs
- > 4 frames per second
- Sub-electron read-noise
- Backthinned for high Quantum Efficiency
- Very low levels of clock-induced charge
- Non-inverted operation at cryogenic temperatures
- Development is complete; sensors have been delivered

Gach Jean-Luc, et al, "Development of a 4kx4k frame transfer electron multiplying CCD for scientific applications," Proc SPIE 9154, (2014).

CCD sensors-3

CCD351

- Standard product, for commercial use
- L3Vision technology for sub-electron read-noise
- Video rate readout
- Backthinned spectral response
- In standard production

Package illustration (not final)

Typical Performance

Image section	1024 x 1024
Pixel size	$10~\mu m \times 10~\mu m$
Active image area	$10.24\times10.24~\text{mm}$
Package size	$22.86 \times 28.00 \text{ mm}$
Amplifier responsivity	3.5 μV/e–
Readout noise	< 1 e- (with EM gain)
Multiplication gain	100-1000 typical
Output data rate	37 MHz
Pixel charge storage	35 ke-/pixel
Dark signal (18°C)	100 e-/pixel/s

Contents-3

e2v develops sub-systems to complement its supply of sensors.

- Bespoke systems are optimised for each application and use common modules where appropriate.
- Performance of sensors combined with system can be guaranteed.

3. Precision System assemblies

- The WUVS space sensor system
 - KMTNet focal planes
- The J-PAS OAJ Cryocam system

WUVS

World Space Observatory UV Spectrograph

- 115-310 nm range covered by three sensor channels
- Custom sealed vacuum cryostat enclosures for 9 year life
- with flight electronics (associated with RAL Space)
- UV optimised custom CCD272 operated at -100°C
- Components maintain alignment after shock & vibration of launch
- Design and manufacture underway

WUVS

Triple detector unit detector layout with camera electronics units

See Poster by Vladimir Panchuk, 9905, Sun pm

KMTNet focal planes

Korea Micro-lensing Telescope Network

3 telescopes each with its own camera; 350 mm focal plane; 340 MegaPixel each Each camera had four CCD290 science sensors and four guide sensors; < 30 μ m flatness Focal planes are complete (e2v), operational and installed in cameras (by Ohio State University)

J-PAS Cryocam

A 1.2 Gigapixel cryocam for use on the 2.5m OAJ telescope for the J-PAS survey. e2v has just completed this important commercially-suppled astronomical camera

J-PAS Cryocam

Table of key features

450 mm focal plane diameter	-100°C operating temperature	Stable to +/- 0.5°C
27 μm peak-valley flatness	Measured at -100C	Stable against flexure
14 science CCD290-99 sensors:	1.2 Gig pixels	9K X 9K sensors
8 wavefront sensors:	CCD44-82 FT	Custom packages
4 guide sensors:	CCD47-20 FT	Custom packages
Integrated electronics	224 science channels	< 5 e- read-noise at 400 kHz
Modular CCD drive units	Synchronized readout of science CCDs	Local frame stores
Complete LN2 cooling system	Integrated vacuum system	Post-delivery support
Cold light baffle	High Quantum Efficiency	minimum reflection AR coat

See paper by Mark Robbins, 9908, Tues 28 June 2016, am, S8

And K Taylor et al, JPCAM, JAI vol 3, 2014

Summary

And some closing remarks

This paper is an update of e2v technology developments and products since:

Jorden P R, Jordan D, Jerram P, Pratlong J, Swindells I, "e2v new CCD and CMOS technology developments for astronomical sensors," Proc SPIE 9154, (2014).

- An increasing number of sensors are being developed using CMOS architectures
 Many of these are backthinned and offer low read-noise (comparable to CCDs)
- CCDs continue to be used in larger quantities and with greater heritage
 CCDs offer better red response in general (thicker silicon)
- e2v offers custom system solutions including cryogenic cameras and electronic modules to complement its supply of sensors- and with guaranteed performance

Thank you for your attention

OUR INNOVATIONS LEAD DEVELOPMENTS IN COMMUNICATIONS, AUTOMATION, DISCOVERY, HEALTHCARE AND THE ENVIRONMENT