

e2v CMOS (and CCD) sensors (and systems) for astronomy

Paul Jorden
BNL PACCD2016 1 Dec 2016

Contents-1

E2v manufactures silicon sensors and systems for ground-based astronomy and space use

e2v designs and manufactures an increasing suite of CMOS imagers for high performance use

1. CMOS Sensors achieve maturity

- Custom Backthinned CMOS sensors for ground-based astronomy
 - Custom CMOS sensors for space use
 - Standard CMOS sensors
 - CMOS developments

2. EM CCDs

- Standard L3Vision sensors
- Custom sensors for astronomy & science

3. Precision System assemblies

- The WUVS space sensor system
 - KMTNet focal planes
- The J-PAS OAJ Cryocam system

4. Summary

CIS113

Developed for the TAOS-II project.

Development complete; production in progress; 10 delivered; full set of 40 due for completion by Jan 2017

Paper by Jérôme Pratlong, 9915, Tues am, S8

Number of pixels	1920 (H) × 4608 (V)	
Pixel size	16.0 μm square	
Image area	$73.73 \text{m} \times 30.72 \text{ mm}$	
Output ports	8 (REF and SIG each)	
Package size	82.39 mm × 31.7 mm	
Package format	76 pin ceramic PGA attached to invar block	
Focal plane height	14.0 mm	
Flatness	< 30 µm (peak - valley)	
Conversion gain	75 μV/e ⁻	
Readout noise	3 e ⁻ at 2 MP/s per ch.	
Maximum pixel rate	2 MP/s per channel	
Maximum charge	22,000 e ⁻ per pixel	
Dark signal	70 e ⁻ /pixel/s (at 21 °C)	
Frame rate	2 fps (full frame mode)20 fps (multiple ROI's)	

Onyx EV76C664

Key Features

- Standard product with low noise
- Fully digital sensor with multiple modes
- Frontside illuminated with micro-lens

Number of pixels	1280 X 1024 (1.3 Megapixel)	
Pixel size	10.0 μm square	
Shutter modes	Global and Rolling	
Output	8, 10, 12, 14 bit LVDS	
Package format	Ceramic 67-pin PGA	
Readout noise	6 e ⁻ (min, depending on mode)	
Quantum Efficiency	Monochrome or sparse colour (with microlens)	
Maximum charge	16,000 e ⁻ per pixel	

See e2v.com for datasheet

CIS115

- Backthinned sensor with low read-noise
- Designed for space applications
- Planned for JANUS (Juice) ESA mission
- Being qualified for space use by end-2016
- Samples available; FMs to follow

Number of pixels	1504(H) × 2000(V)
Pixel size	7.0 µm square
Number of output ports (reset and signal pins)	4 pairs of analogue outputs
Package size	48.26 mm square
Package format	140 pin ceramic PGA
Flatness	< 10 µm (peak to valley)
Conversion gain	35 μV/e ⁻
Readout noise	7 e ⁻ (Rolling shutter)
Maximum pixel data rate	8 MP/s per channel
Maximum charge per pixel	55,000 e ⁻
Frame rate	Up to 10 Hz
Minimum time to read one line at 6.2 MP/s	66.25 μs
Frame rate at full resolution	Up to 7.5 fps

TDI CMOS development

Time-Delay-Integrate used for scanning space applications; eg GAIA uses TDI CCDs

- TDI CMOS offers digital architecture & low power
- Most promising technique is a CCD-like structure-
- Charge summation along track
- Good CTE after irradiation is important
- Small test devices made & tested
- Full sized device planned

CIS111 (MTG FCI)

- Example of imager used for earth observation-
- Offers higher frame rate and lower crosstalk than an equivalent CCD
- CIS111 to be used on Meteosat Third Generation Flexible Combined Imager
- 5 independent imager blocks with in-package filters
- Rhombus shaped pixels in outer blocks
- Optimised for good transfer through large pixels and low lag

CIS111 architecture

CIS116 (Metimage)

Custom test vehicle with 250 um square pixels

- Each pixel has 8 photodiodes with a common sense node
- Aims to optimise lag and Charge-Voltage-Factor
- 2.5 Me- peak signal; 84 dB dynamic range
- Designed for backthinning
- Test devices have been characterised

CIS120

Easy to use general purpose imager for space

Package example

Number of pixels:	2048(H) × 2048(V)
Pixel size:	10.0 μm square
Package format:	Ceramic-PGA or 3-side buttable option
Maximum charge per pixel:	50,000 e ⁻
Readout noise:	4 e ⁻ (Rolling shutter)
Conversion gain:	45 μV/e ⁻
Back-thinned QE:	90% at 550 nm
Frame rate:	30 fps @ 8 bit resolution
Power consumption:	350 mV (full LVDS)
4 LVDS outputs	8, 10, 12, 14 bits ADC

Rolling and global shutter; SPI programmable configuration Digital outputs. Designed to be radiation tolerant

Front-illuminated samples due for test- Mar 2017 Back-illuminated samples due for test- 4Q 2017

CMOS detectors-9 ...

Fully Depleted, Monolithic PPD CMOS Image Sensor Using Reverse Substrate Bias

Konstantin Stefanov Centre for Electronic Imaging (CEI)

Background

- Demand for thick (>100 μm), fully depleted CMOS sensors for high QE
- Near-IR imaging for astronomy, Earth observation, hyperspectral imaging, high speed imaging, spectroscopy, microscopy and surveillance.
- Soft X-ray (<10 keV) imaging at synchrotron light sources and free electron lasers requires substrate thickness >200 μm
- Low voltage CMOS sensors normally have small depletion depths

Reverse biasing PPD pixels

- If reverse bias V_{reverse} is applied:
 - p+/p/p+ resistor is formed, leakage current flows
 - This has to be eliminated for a practical device
- Pinch-off under the p-wells is needed at all times (merged depletion regions) to prevent leakage
- The pinch-off condition depends on:
 - Doping and junction depth
 - Photodiode and p-well sizes
 - Bias voltages
 - Stored signal charge
- P-wells should be narrow and shallow
- Photodiodes should be deep

Substrate current suppression

Simplified PPD pixel structure

- If the p-wells are deep (as they are usually), pinch-off may not occur
- The p-well should be made to be as narrow as possible, but this is not sufficient
- The CMOS structure makes pinch-off harder to achieve than "high rho" CCDs
- Additional n-type implant added:
 - Under the p-wells
 - Floating
 - Not connected to anything
 - Called Deep Depletion Extension (DDE)
- Patent pending (owned by e2v Technologies)
- Can be applied to any existing design

Potentials

The first chip (BSB1)

- Made on 18 μ m 1 $k\Omega$.cm epi, as a proof of principle
 - This reverse bias method applies to any thickness
- Prototyping 10 μm and 5.4 μm pixel designs
 - 8 pixel arrays of 32 (V) \times 20 (H) pixels each
- Each array explores different shape and size of the DDE implant
 - One reference design without DDE (plain PPD pixel)
- Custom ESD protection designed
- Delivered in July 2016
- Characterisation goals:
 - Reverse bias and current, prove full depletion
 - Gain, linearity, image lag; comparison with nonmodified PPD pixel
 - Over-illumination
 - X-ray response

Reverse biasing

- This shows the reverse current for the whole chip, including the logic and ESD pads
- All pixel variants work
- Reverse bias above -5V with no leakage means that any thickness can be depleted
 - V_{BSB} = -4V fully depletes 18 μm thick epi, 1 k Ω .cm
- Qualitative agreement with the simulations
 - The measurement is for all 8 variants in parallel, simulation is for one variant only

Electro-optical performance

- Photon transfer curves taken under various conditions
- 10 μm pixel:
 - CVF \approx 80 μ V/e- (design = 70 μ V/e-)
 - FWC ≈ 15 ke- (design = 20 ke-, limited by the sense node)
 - Noise (in our system) ≈ 8 e- RMS
- 5.4 μm pixel:
 - CVF \approx 36 μ V/e- (design = 33 μ V/e-)
 - FWC ≈ 15 ke- (design = 45 ke-, limited by the sense node and off-pixel circuits)
- The new pixels appear identical to the "normal" pixels
- The DDE implant and the reverse bias do not seem to affect the electro-optical performance – great!

Conclusions

- New development of fully depleted monolithic PPD CMOS sensors using reverse substrate bias
 - A paper in IEEE Electron Device Letters (in press)
- Based on the idea of "depletion extension"
- First prototype designed on 18 μ m, 1 $k\Omega$.cm epi as a proof of principle
 - Can be scaled to much thicker epi/bulk substrates
 - Front-face results shown here
 - Back-thin (demo device) to be tested ~ March 2017
 - Aim to design & make 40 um thick imager next.....
- Can be attractive to large number of applications
 - High QE on a par with thick CCDs and hybrid CMOS
 - Low noise, 4T architecture with minimum changes
- Competitor to scientific CCDs?

CCDs with high red sensitivity LSST CCD250

- 4k X 4k 10 μm format
- 189 science sensors
- 100 μm thick; 5 um flat
- High precision SiC buttable package
- 16 outputs; 2 s readout
- 5 e- read-noise

Pictures courtesy: LSST

Contents-2

We illustrate selected EMCCDs
Internal electron gain allows sub-electron read-noise
Combined with backthinned spectral response for very high sensitivity
Several formats and sizes available

Standard (non EMCCDs) are not discussed in this presentation- many are visible on e2v.com

2. EM CCDs

- Standard L3Vision sensors
- Custom sensors for astronomy & science

CCD sensors-1

E2V Bringing life to technology

CCD201

- Standard product
- 1024 X 1024 pixels; 13 μm pixels
- Larger format than CCD97 (512 X 512 pixels)
- Widely used for commercial applications
- Also useful for astronomy at low signal levels
- Sub-electron read noise
- Backthinned for high spectral response
- Inverted mode dark current

Planned for Space use: NASA WFIRST Coronagraph

Harding L, et al, "Technology advancement of the CCD201-20 EMCCD for the WFIRST-AFTA Coronagraph Instrument...," JATIS 011007, (2016).

See poster by Nathan Bush, 9904, Tues pm

CCD sensors-2

E2V Bringing life to technology

CCD282

- Largest EMCCD manufactured to date
- 4096 X 4096 pixel image area
- Split frame-transfer read-out with 8 outputs
- > 4 frames per second
- Sub-electron read-noise
- Backthinned for high Quantum Efficiency
- Very low levels of clock-induced charge
- Non-inverted operation at cryogenic temperatures
- Development is complete; sensors have been delivered

Gach Jean-Luc, et al, "Development of a 4kx4k frame transfer electron multiplying CCD for scientific applications," Proc SPIE 9154, (2014).

CCD sensors-3

CCD351

- Standard product, for commercial use
- L3Vision technology for sub-electron read-noise
- Video rate readout
- Backthinned spectral response
- In standard production

Package illustration (not final)

Typical Performance

Image section	1024 x 1024
Pixel size	$10 \mu \text{m} \times 10 \mu \text{m}$
Active image area	$10.24 \times 10.24 \text{ mm}$
Package size	$22.86 \times 28.00 \text{ mm}$
Amplifier responsivity	3.5 μV/e-
Readout noise	< 1 e- (with EM gain)
Multiplication gain	100-1000 typical
Output data rate	37 MHz
Pixel charge storage	35 ke-/pixel
Dark signal (18°C)	100 e-/pixel/s

Contents-3

e2v develops sub-systems to complement its supply of sensors.

- Bespoke systems are optimised for each application and use common modules where appropriate.
- Performance of sensors combined with system can be guaranteed.

3. Precision System assemblies

- The WUVS space sensor system
 - KMTNet focal planes
- The J-PAS OAJ Cryocam system

WUVS

World Space Observatory UV Spectrograph

- 115-310 nm range covered by three sensor channels
- Custom sealed vacuum cryostat enclosures for 9 year life
- with flight electronics (associated with RAL Space)
- UV optimised custom CCD272 operated at -100°C
- Components maintain alignment after shock & vibration of launch
- Design and manufacture underway

WUVS

Triple detector unit detector layout with camera electronics units

See Poster by Vladimir Panchuk, 9905, Sun pm

KMTNet focal planes

Korea Micro-lensing Telescope Network

3 telescopes each with its own camera; 350 mm focal plane; 340 MegaPixel each Each camera had four CCD290 science sensors and four guide sensors; < 30 µm flatness Focal planes are complete (e2v), operational and installed in cameras (by Ohio State University)

J-PAS Cryocam

A 1.2 Gigapixel cryocam for use on the 2.5m OAJ telescope for the J-PAS survey. e2v has delivered (mid-2016) this important commercially-suppled astronomical camera

J-PAS Cryocam

Table of key features

450 mm focal plane diameter	-100°C operating temperature	Stable to +/- 0.5°C
27 μm peak-valley flatness	Measured at -100C	Stable against flexure
14 science CCD290-99 sensors:	1.2 Gig pixels	9K X 9K sensors
8 wavefront sensors:	CCD44-82 FT	Custom packages
4 guide sensors:	CCD47-20 FT	Custom packages
Integrated electronics	224 science channels	< 5 e- read-noise at 400 kHz
Modular CCD drive units	Synchronized readout of science CCDs	Local frame stores
Complete LN2 cooling system	Integrated vacuum system	Post-delivery support
Cold light baffle	High Quantum Efficiency	minimum reflection AR coat

See paper by Mark Robbins, 9908, Tues 28 June 2016, am, S8

And K Taylor et al, JPCAM, JAI vol 3, 2014

Summary

- An increasing number of sensors are being developed using CMOS architectures
 - Many of these are backthinned and offer low read-noise (comparable to CCDs)
- CCDs continue to be used in larger quantities and with greater heritage
- e2v offers custom system solutions including cryogenic cameras and electronic modules to complement its supply of sensors- and with guaranteed performance

Thank you for your attention

OUR INNOVATIONS LEAD DEVELOPMENTS IN COMMUNICATIONS, AUTOMATION, DISCOVERY, HEALTHCARE AND THE ENVIRONMENT